Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MAD2 activates IGF1R/PI3K/AKT pathway and promotes cholangiocarcinoma progression by interfering USP44/LIMA1 complex

Abstract

Spindle assembly checkpoint (SAC) plays an essential part in facilitating normal cell division. However, the clinicopathological and biological significance of mitotic arrest deficient 2 like 1 (MAD2/MAD2L1), a highly conserved member of SAC in cholangiocarcinoma (CCA) remain unclear. We aim to determine the role and mechanism of MAD2 in CCA progression. In the study, we found up-regulated MAD2 facilitated CCA progression and induced lymphatic metastasis dependent on USP44/LIMA1/PI3K/AKT pathway. MAD2 interfered the binding of USP44 to LIMA1 by sequestrating more USP44 in nuclei, causing impaired formation of USP44/LIMA1 complex and enhanced LIMA1 K48 (Lys48)-linked ubiquitination. In therapeutic perspective, the data combined eleven cases of CCA PDTX model showed that high-MAD2 inhibits tumor necrosis and diminishes the inhibition of cell viability after treated with gemcitabine-based regimens. Immunohistochemistry (IHC) analysis of tissue microarray (TMA) for CCA patients revealed that high-MAD2, low-USP44 or low-LIMA1 level are correlated with worse survival for patients. Together, MAD2 activates PI3K/AKT pathway, promotes cancer progression and induces gemcitabine chemo-resistance in CCA. These findings suggest that MAD2 might be an excellent indicator in prognosis analysis and chemotherapy guidance for CCA patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MAD2 was upregulated in CCA.
Fig. 2: MAD2 enhanced CCA proliferation, metastasis, invasiveness, and lymph-angiogenesis in vitro.
Fig. 3: MAD2 facilitated CCA development in vivo.
Fig. 4: MAD2 promoted CCA progression in PI3K/AKT signaling dependent manner.
Fig. 5: MAD2 interacted with LIMA1 and facilitated its degradation.
Fig. 6: USP44 interacted with and hindered LIMA1 degradation.
Fig. 7: CCA cells with MAD2 suppression are more sensitive to gemcitabine.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Additional data underlying the study are available on request to the corresponding authors.

References

  1. Huang YH, Zhang CZ, Huang QS, Yeong J, Wang F, Yang X, et al. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma. J Hepatol. 2021;74:838–49.

    Article  CAS  PubMed  Google Scholar 

  2. Hosokawa I, Hayano K, Furukawa K, Takayashiki T, Kuboki S, Takano S, et al. Preoperative diagnosis of lymph node metastasis of perihilar cholangiocarcinoma using diffusion-weighted magnetic resonance imaging. Ann Surg Oncol. 2022;29:5502–10.

    Article  PubMed  Google Scholar 

  3. Zhang XF, Xue F, Dong DH, Weiss M, Popescu I, Marques HP, et al. Number and station of lymph node metastasis after curative-intent resection of intrahepatic cholangiocarcinoma impact prognosis. Ann Surg. 2021;274:e1187–e1195.

    Article  PubMed  Google Scholar 

  4. Esnaola NF, Meyer JE, Karachristos A, Maranki JL, Camp ER, Denlinger CS. Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer. 2016;122:1349–69.

    Article  PubMed  Google Scholar 

  5. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145:1215–29.

    Article  CAS  PubMed  Google Scholar 

  6. Aoki S, Inoue K, Klein S, Halvorsen S, Chen J, Matsui A, et al. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut. 2022;71:185–93.

    Article  CAS  PubMed  Google Scholar 

  7. Kelley RK, Bridgewater J, Gores GJ, Zhu AX. Systemic therapies for intrahepatic cholangiocarcinoma. J Hepatol. 2020;72:353–63.

    Article  CAS  PubMed  Google Scholar 

  8. Chao WC, Kulkarni K, Zhang Z, Kong EH, Barford D. Structure of the mitotic checkpoint complex. Nature. 2012;484:208–13.

    Article  CAS  PubMed  Google Scholar 

  9. Jiao CY, Feng QC, Li CX, Wang D, Han S, Zhang YD, et al. BUB1B promotes extrahepatic cholangiocarcinoma progression via JNK/c-Jun pathways. Cell Death Dis. 2021;12:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sironi L, Mapelli M, Knapp S, De Antoni A, Jeang KT, Musacchio A. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J. 2002;21:2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sudakin V, Chan GK, Yen TJ. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 2001;154:925–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bates M, Furlong F, Gallagher MF, Spillane CD, McCann A, O’Toole S, et al. Too MAD or not MAD enough: the duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Lett. 2020;469:11–21.

    Article  CAS  PubMed  Google Scholar 

  13. Pajuelo-Lozano N, Alcala S, Sainz B Jr., Perona R, Sanchez-Perez I. Targeting MAD2 modulates stemness and tumorigenesis in human Gastric Cancer cell lines. Theranostics. 2020;10:9601–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowald K, Mantovan M, Passos J, Buccitelli C, Mardin BR, Korbel JO, et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep. 2016;15:2679–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furlong F, Fitzpatrick P, O’Toole S, Phelan S, McGrogan B, Maguire A, et al. Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer. J Pathol. 2012;226:746–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun SC, Kim NH. Spindle assembly checkpoint and its regulators in meiosis. Hum Reprod Update. 2012;18:60–72.

    Article  CAS  PubMed  Google Scholar 

  17. Ohashi T, Idogawa M, Sasaki Y, Tokino T. p53 mediates the suppression of cancer cell invasion by inducing LIMA1/EPLIN. Cancer Lett. 2017;390:58–66.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang S, Wang X, Iqbal S, Wang Y, Osunkoya AO, Chen Z, et al. Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. J Biol Chem. 2013;288:1469–79.

    Article  CAS  PubMed  Google Scholar 

  19. Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, et al. The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 2020;21:e50308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature. 2007;446:876–81.

    Article  CAS  PubMed  Google Scholar 

  21. Reddy BA, van der Knaap JA, Bot AG, Mohd-Sarip A, Dekkers DH, Timmermans MA, et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell. 2014;53:458–70.

    Article  CAS  PubMed  Google Scholar 

  22. Vaquero J, Lobe C, Tahraoui S, Claperon A, Mergey M, Merabtene F, et al. The IGF2/IR/IGF1R pathway in tumor cells and myofibroblasts mediates resistance to EGFR inhibition in cholangiocarcinoma. Clin Cancer Res. 2018;24:4282–96.

    Article  CAS  PubMed  Google Scholar 

  23. Cercek A, Boerner T, Tan BR, Chou JF, Gonen M, Boucher TM, et al. Assessment of hepatic arterial infusion of floxuridine in combination with systemic gemcitabine and oxaliplatin in patients with unresectable intrahepatic cholangiocarcinoma: a phase 2 clinical trial. JAMA Oncol. 2020;6:60–67.

    Article  PubMed  Google Scholar 

  24. Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 2017;31:820–32.e823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao B, et al. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer. 2020;19:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tiemin P, Fanzheng M, Peng X, Jihua H, Ruipeng S, Yaliang L, et al. MUC13 promotes intrahepatic cholangiocarcinoma progression via EGFR/PI3K/AKT pathways. J Hepatol. 2020;72:761–73.

    Article  PubMed  Google Scholar 

  27. Corti F, Nichetti F, Raimondi A, Niger M, Prinzi N, Torchio M, et al. Targeting the PI3K/AKT/mTOR pathway in biliary tract cancers: a review of current evidences and future perspectives. Cancer Treat Rev. 2019;72:45–55.

    Article  CAS  PubMed  Google Scholar 

  28. Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Furst K, et al. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell. 2013;24:512–27.

    Article  CAS  PubMed  Google Scholar 

  29. Chen YL, Liu B, Zhou ZN, Hu RY, Fei C, Xie ZH, et al. Smad6 inhibits the transcriptional activity of Tbx6 by mediating its degradation. J Biol Chem. 2009;284:23481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, et al. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest. 2012;122:4362–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Zhao Y, Yang X, Ren X, Huang S, Gong S, et al. USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat Commun. 2022;13:501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang YK, Tian WZ, Zhang RS, Zhang YJ, Ma HT. Ubiquitin-specific protease 44 inhibits cell growth by suppressing AKT signaling in non-small cell lung cancer. Kaohsiung J Med Sci. 2019;35:535–41.

    Article  CAS  PubMed  Google Scholar 

  33. Malka D, Cervera P, Foulon S, Trarbach T, de la Fouchardiere C, Boucher E, et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15:819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM, et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015;33:2617–22.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng Y, Qin SK, Li J, Dai GH, Shen BY, Ying JE, et al. A multicenter clinical study: personalized medication for advanced gastrointestinal carcinomas with the guidance of patient-derived tumor xenograft (PDTX). J Cancer Res Clin Oncol. 2022;148:673–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank pathologists in the First Affiliated Hospital of Nanjing Medical University for evaluating HE and IHC slides and the professional technicians in Nanjing Personal Oncology Biological Technology Co. Ltd for their guidance.

Funding

This work was supported by Jiangsu Provincial Key Research and Development Program (BE2016789).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: XL, CL; Acquisition of data: XS, JW, YumingW, AC, JS, YiruiW, JC, RC, TZ; Analysis and interpretation of data: WJ, YaodongZ; Drafting of the manuscript: WJ; Critical revision of the manuscript for important intellectual content: XL, YY and CL; Obtained funding: XL, CL; Administrative, technical, or material support: YanpingZ and YY; Study supervision: XL and CL.

Corresponding authors

Correspondence to Changxian Li or Xiangcheng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Yang, X., Shi, K. et al. MAD2 activates IGF1R/PI3K/AKT pathway and promotes cholangiocarcinoma progression by interfering USP44/LIMA1 complex. Oncogene 42, 3344–3357 (2023). https://doi.org/10.1038/s41388-023-02849-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02849-6

Search

Quick links