Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

YAP governs cellular adaptation to perturbation of glutamine metabolism by regulating ATF4-mediated stress response

Abstract

Proliferating cells have metabolic dependence on glutamine to fuel anabolic pathways and to refill the mitochondrial carbon pool. The Hippo pathway is essential for coordinating cell survival and growth with nutrient availability, but no molecular connection to glutamine deprivation has been reported. Here, we identify a non-canonical role of YAP, a key effector of the Hippo pathway, in cellular adaptation to perturbation of glutamine metabolism. Whereas YAP is inhibited by nutrient scarcity, enabling cells to restrain proliferation and to maintain energy homeostasis, glutamine shortage induces a rapid YAP dephosphorylation and activation. Upon glutaminolysis inhibition, an increased reactive oxygen species production inhibits LATS kinase via RhoA, leading to YAP dephosphorylation. Activated YAP promotes transcriptional induction of ATF4 to induce the expression of genes involved in amino acid homeostasis, including Sestrin2. We found that YAP-mediated Sestrin2 induction is crucial for cell viability during glutamine deprivation by suppressing mTORC1. Thus, a critical relationship between YAP, ATF4, and mTORC1 is uncovered by our findings. Finally, our data indicate that targeting the Hippo-YAP pathway in combination with glutaminolysis inhibition may provide potential therapeutic approaches to treat tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: YAP is activated by glutamine (Gln) metabolism inhibition.
Fig. 2: Gln metabolism regulates YAP activity through ROS.
Fig. 3: YAP transcriptionally up-regulates ATF4 upon glutaminolysis inhibition.
Fig. 4: The YAP-ATF4 pathway suppresses mTORC1 activity by inducing Sestrin2 upon glutaminolysis inhibition.
Fig. 5: YAP activation is required for cell survival upon glutaminolysis inhibition.
Fig. 6: YAP inhibition sensitizes tumor growth to glutaminolysis inhibitors in vivo.
Fig. 7: A proposed model for YAP-mediated cellular adaptation upon glutamine starvation.

Similar content being viewed by others

Data availability

The data generated and analyzed in the current study are available within the manuscript. Additional data are available from the corresponding author upon reasonable request.

References

  1. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35:427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altman BJ, Stine ZE, Dang CV. From krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:749.

    Article  CAS  PubMed  Google Scholar 

  4. Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020;52:1496–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Biancur DE, Paulo JA, Malachowska B, Quiles Del Rey M, Sousa CM, Wang X, et al. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun. 2017;8:15965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye J, Palm W, Peng M, King B, Lindsten T, Li MO, et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 2015;29:2331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim M, Gwak J, Hwang S, Yang S, Jeong SM. Mitochondrial GPT2 plays a pivotal role in metabolic adaptation to the perturbation of mitochondrial glutamine metabolism. Oncogene. 2019;38:4729–38.

    Article  CAS  PubMed  Google Scholar 

  8. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94:1287–312.

    Article  CAS  PubMed  Google Scholar 

  9. Koo JH, Guan KL. Interplay between YAP/TAZ and metabolism. Cell Metab. 2018;28:196–206.

    Article  CAS  PubMed  Google Scholar 

  10. Ibar C, Irvine KD. Integration of Hippo-YAP signaling with metabolism. Dev Cell. 2020;54:256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22:1962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cox AG, Hwang KL, Brown KK, Evason K, Beltz S, Tsomides A, et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol. 2016;18:886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Du K, Hyun J, Premont RT, Choi SS, Michelotti GA, Swiderska-Syn M, et al. Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells. Gastroenterology. 2018;154:1465–1479 e1413.

    Article  CAS  PubMed  Google Scholar 

  15. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901.

    Article  CAS  PubMed  Google Scholar 

  16. Xiang Y, Stine ZE, Xia J, Lu Y, O’Connor RS, Altman BJ, et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015;125:2293–306.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jacque N, Ronchetti AM, Larrue C, Meunier G, Birsen R, Willems L, et al. Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood. 2015;126:1346–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, et al. Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies. Front Oncol. 2020;10:589508.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu SC. Glutathione synthesis. Biochim Biophys Acta. 2013;1830:3143–53.

    Article  CAS  PubMed  Google Scholar 

  20. Jin L, Ying Z, Webb RC. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol. 2004;287:H1495–1500.

    Article  CAS  PubMed  Google Scholar 

  21. Hobbs GA, Zhou B, Cox AD, Campbell SL. Rho GTPases, oxidation, and cell redox control. Small GTPases. 2014;5:e28579.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jang JW, Kim MK, Bae SC. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the small GTPase pathway. Small GTPases. 2020;11:280–8.

    Article  PubMed  Google Scholar 

  23. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. 2017;28:794–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I. The role of the PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 2016;16:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. 2012;26:1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr. 2012;3:307–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab. 2013;18:792–801.

    Article  CAS  PubMed  Google Scholar 

  28. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE, Mydock-McGrane L, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355:1306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim JS, Ro SH, Kim M, Park HW, Semple IA, Park H, et al. Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep. 2015;5:9502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 2010;29:2082–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. 2016;17:1374–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 2014;56:205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vaidyanathan S, Salmi TM, Sathiqu RM, McConville MJ, Cox AG, Brown KK. YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Dev Cell. 2022;57:719–31 e718.

    Article  CAS  PubMed  Google Scholar 

  35. Xu X, Meng Y, Li L, Xu P, Wang J, Li Z, et al. Overview of the development of glutaminase inhibitors: achievements and future directions. J Med Chem. 2019;62:1096–115.

    Article  CAS  PubMed  Google Scholar 

  36. Lukey MJ, Wilson KF, Cerione RA. Therapeutic strategies impacting cancer cell glutamine metabolism. Future Med Chem. 2013;5:1685–1700.

    Article  CAS  PubMed  Google Scholar 

  37. Stanton RC. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival. IUBMB Life. 2012;64:362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lomelino CL, Andring JT, McKenna R, Kilberg MS. Asparagine synthetase: function, structure, and role in disease. J Biol Chem. 2017;292:19952–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Korean Government (2022R1F1A1066394 and RS-2023-00244737). M.K. was supported in part by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (2022R1A6A3A13068164).

Author information

Authors and Affiliations

Authors

Contributions

MK and SMJ prepared the concept. SMJ designed and supervised the study. MK, SH, BK, SS, SY, and JG performed the experiments. MK and SMJ analyzed the data. MK and SMJ acquired fundings. SMJ wrote the main manuscript.

Corresponding author

Correspondence to Seung Min Jeong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Hwang, S., Kim, B. et al. YAP governs cellular adaptation to perturbation of glutamine metabolism by regulating ATF4-mediated stress response. Oncogene 42, 2828–2840 (2023). https://doi.org/10.1038/s41388-023-02811-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02811-6

This article is cited by

Search

Quick links