Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AXL activates YAP through the EGFR–LATS1/2 axis and confers resistance to EGFR-targeted drugs in head and neck squamous cell carcinoma

Abstract

The Hippo signaling pathway and its downstream effector YAP play a central role in cell proliferation. Dysregulation of the Hippo pathway triggers YAP hyperactivation, thereby inducing head and neck squamous cell carcinoma (HNSCC). Recently, we reported that EGFR promotes tyrosine phosphorylation of MOB1 and subsequent LATS1/2 inactivation, which are core components of the Hippo pathway, resulting in YAP activation. However, EGFR-targeted monotherapy has shown a low response rate in HNSCC patients. Given that YAP is activated in patient samples refractory to EGFR-targeted therapy, EGFR inhibitors may temporarily inactivate YAP, but intrinsic hyperactivation or acquired reactivation of YAP may confer resistance to EGFR inhibitors in HNSCC cells. The mechanism by which YAP is activated in HNSCC resistant to EGFR inhibitors remains unclear. Comprehensive transcriptional analysis revealed that AXL activates YAP through a novel mechanism: AXL heterodimerizes with EGFR, thereby activating YAP via the EGFR–LATS1/2 axis. The combination of AXL and EGFR inhibitors synergistically inactivates YAP and suppresses the viability of HNSCC and lung adenocarcinoma cells. In turn, LATS1/2 knockout and YAP hyperactivation confer resistance to the synergistic effects of these inhibitors. Our findings suggest that co-targeting both AXL and EGFR represent a promising therapeutic approach in patients with EGFR-altered cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AXL expression is positively correlated with YAP activation and EGFR expression in HNSCC.
Fig. 2: AXL inhibitor inactivates YAP and is refractory to YAP-activated cancer cells.
Fig. 3: AXL heterodimerization with EGFR activates YAP.
Fig. 4: LATS1/2 KO rescues the synergistic effect of EGFR and AXL inhibitors.

Similar content being viewed by others

Data availability

CCLE data set is available online (https://portals.broadinstitute.org/ccle). TCGA data is available from c-bioportal (https://www.cbioportal.org/). The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576-82.

  3. Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 2019;16:669–83.

    Article  PubMed  Google Scholar 

  4. Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25:2171–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17:637–58.

    Article  CAS  PubMed  Google Scholar 

  6. Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer. 2017;116:415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meyer AS, Miller MA, Gertler FB, Lauffenburger DA. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal. 2013;6:ra66.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vouri M, Croucher DR, Kennedy SP, An Q, Pilkington GJ, Hafizi S. Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis. 2016;5:e266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jimbo T, Hatanaka M, Komatsu T, Taira T, Kumazawa K, Maeda N, et al. DS-1205b, a novel selective inhibitor of AXL kinase, blocks resistance to EGFR-tyrosine kinase inhibitors in a non-small cell lung cancer xenograft model. Oncotarget. 2019;10:5152–67.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, et al. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res. 2020;26:2244–56.

    Article  CAS  PubMed  Google Scholar 

  11. Tsukamoto S, Sugi NH, Nishibata K, Nakazawa Y, Ito D, Fukushima S, et al. ER-851, a novel selective inhibitor of AXL, overcomes resistance to antimitotic drugs. Mol Cancer Ther. 2023;22:12–24.

    Article  CAS  PubMed  Google Scholar 

  12. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ando T, Okamoto K, Shintani T, Yanamoto S, Miyauchi M, Gutkind JS, et al. Integrating genetic alterations and the hippo pathway in head and neck squamous cell carcinoma for future precision medicine. J Pers Med. 2022;12:1544.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ando T, Arang N, Wang Z, Costea DE, Feng X, Goto Y, et al. EGFR regulates the Hippo pathway by promoting the tyrosine phosphorylation of MOB1. Commun Biol. 2021;4:1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jerhammar F, Johansson AC, Ceder R, Welander J, Jansson A, Grafström RC, et al. YAP1 is a potential biomarker for cetuximab resistance in head and neck cancer. Oral Oncol. 2014;50:832–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci. 2010;101:1279–85.

    Article  CAS  PubMed  Google Scholar 

  20. Hsu PC, You B, Yang YL, Zhang WQ, Wang YC, Xu Z, et al. YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget. 2016;7:51922–33.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020;37:104–22.e112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghiso E, Migliore C, Ciciriello V, Morando E, Petrelli A, Corso S, et al. YAP-dependent AXl overexpression mediates resistance to EGFR inhibitors in NSCLC. Neoplasia. 2017;19:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell. 2012;151:1457–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Shi C, Zhou R, Han Y, Xu S, Ma H, et al. The crosstalk between AXL and YAP promotes tumor progression through STAT3 activation in head and neck squamous cell carcinoma. Cancer Sci. 2020;111:3222–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coppé JP, Mori M, Pan B, Yau C, Wolf DM, Ruiz-Saenz A, et al. Mapping phospho-catalytic dependencies of therapy-resistant tumours reveals actionable vulnerabilities. Nat Cell Biol. 2019;21:778–90.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ishikawa M, Sonobe M, Nakayama E, Kobayashi M, Kikuchi R, Kitamura J. et al. Higher expression of receptor tyrosine kinase Axl, and differential expression of its ligand, Gas6, predict poor survival in lung adenocarcinoma patients. Ann Surg Oncol. 2013;20:S467–76.

    Article  PubMed  Google Scholar 

  28. Ben-Batalla I, Schultze A, Wroblewski M, Erdmann R, Heuser M, Waizenegger JS, et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood. 2013;122:2443–52.

    Article  CAS  PubMed  Google Scholar 

  29. Lee CH, Yen CY, Liu SY, Chen CK, Chiang CF, Shiah SG. et al. Axl is a prognostic marker in oral squamous cell carcinoma. Ann Surg Oncol. 2012;19:S500–8.

    Article  PubMed  Google Scholar 

  30. Saab S, Chang OS, Nagaoka K, Hung MC, Yamaguchi H. The potential role of YAP in Axl-mediated resistance to EGFR tyrosine kinase inhibitors. Am J Cancer Res. 2019;9:2719–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H, Wu BK, Kanchwala M, Cai J, Wang L, Xing C, et al. YAP/TAZ drives cell proliferation and tumour growth via a polyamine-eIF5A hypusination-LSD1 axis. Nat Cell Biol. 2022;24:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med. 2018;24:1599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang L, Azzolin L, Di Biagio D, Zanconato F, Battilana G, Lucon Xiccato R, et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature. 2018;563:265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mudduluru G, Vajkoczy P, Allgayer H. Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol Cancer Res. 2010;8:159–69.

    Article  CAS  PubMed  Google Scholar 

  36. Mudduluru G, Leupold JH, Stroebel P, Allgayer H. PMA up-regulates the transcription of Axl by AP-1 transcription factor binding to TRE sequences via the MAPK cascade in leukaemia cells. Biol Cell. 2010;103:21–33.

    Article  PubMed  Google Scholar 

  37. Rankin EB, Fuh KC, Castellini L, Viswanathan K, Finger EC, Diep AN, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA. 2014;111:13373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mudduluru G, Allgayer H. The human receptor tyrosine kinase Axl gene–promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep. 2008;28:161–76.

    Article  CAS  PubMed  Google Scholar 

  39. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 2007;104:12867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173:291–304.e296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JST SPRING, Grant Number JPMJSP2132, JP20K18477, “Nozomi h foundation” from the Hiroshima University Foundation, and the JST HIRAKU-Global program.

Author information

Authors and Affiliations

Authors

Contributions

KO and TA initiated the study; KO, TA, MM, SY, JSG and MK designed the study and experiments; KO and TA performed genomic analysis; KO and TA performed in vitro experiments; KO, TA, MM, SY, JSG and MK prepared the manuscript; TS, DI, SK and JSG provided advice; and TA supervised the project. All authors have discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Toshinori Ando.

Ethics declarations

Competing interests

JSG is a member of the advisory board of Domain Therapeutics, io9, and Pangea, and founder of Kadima Pharmaceuticals. The remaining authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, K., Ando, T., Izumi, H. et al. AXL activates YAP through the EGFR–LATS1/2 axis and confers resistance to EGFR-targeted drugs in head and neck squamous cell carcinoma. Oncogene 42, 2869–2877 (2023). https://doi.org/10.1038/s41388-023-02810-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02810-7

Search

Quick links