Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SNORD11B-mediated 2′-O-methylation of primary let-7a in colorectal carcinogenesis

Abstract

Evidence indicates that small nucleolar RNAs (snoRNAs) participate in tumorigenesis and development and could be promising biomarkers for colorectal cancer (CRC). Here, we examine the profile of snoRNAs in CRC and find that expression of SNORD11B is increased in CRC tumor tissues and cell lines, with a significant positive correlation between SNORD11B expression and that of its host gene NOP58. SNORD11B promotes CRC cell proliferation and invasion and inhibits apoptosis. Mechanistically, SNORD11B promotes the processing and maturation of 18 S ribosomal RNA (rRNA) by mediating 2’-O-methylated (Nm) modification on the G509 site of 18 S rRNA. Intriguingly, SNORD11B mediates Nm modification on the G225 site of MIRLET7A1HG (pri-let-7a) with a canonical motif, resulting in degradation of pri-let-7a, inhibition of DGCR8 binding, reduction in mature tumor suppressor gene let-7a-5p expression, and upregulation of downstream oncogene translation. SNORD11B performs comparably to CEA and CA199 in diagnosing CRC. High expression of SNORD11B is significantly correlated with a more advanced TNM stage and lymph node metastasis, which indicates poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: snoRNA-seq reveals the snoRNA expression profile of CRC tissues.
Fig. 2: Identification of SNORD11B as an upregulated snoRNA in CRC.
Fig. 3: SNORD11B knockdown inhibits CRC malignancy in vitro and in vivo.
Fig. 4: SNORD11B mediates Nm modification on G509 site of 18S rRNA.
Fig. 5: SNORD11B negatively regulates let-7-family miRNA expression.
Fig. 6: SNORD11B mediated Nm modification on G225 site of MIRLET7A1HG.
Fig. 7: The oncogenic role of SNORD11B in CRC depends on let-7a-5p.
Fig. 8: Proposed model.

Similar content being viewed by others

Data availability

All data generated in this study are present in the paper and/or the Supplementary Files. The snoRNA-seq data have been deposited in the China National Centre for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: HRA003909) and are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Bhullar DS, Barriuso J, Mullamitha S, Saunders MP, O’Dwyer ST, Aziz O. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine. 2019;40:363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bagaria B, Sood S, Sharma R, Lalwani S. Comparative study of CEA and CA19-9 in esophageal, gastric and colon cancers individually and in combination (ROC curve analysis). Cancer Biol Med. 2013;10:148–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boivin V, Faucher‐Giguère L, Scott M, Abou‐Elela S. The cellular landscape of mid‐size noncoding RNA. WIREs RNA. 2019;10. https://doi.org/10.1002/wrna.1530.

  5. Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48:1627–51.

    Article  PubMed  Google Scholar 

  6. Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology: emerging landscape of small nucleolar RNAs. Wiley Interdiscip Rev RNA. 2015;6:381–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boivin V, Deschamps-Francoeur G, Scott MS. Protein coding genes as hosts for noncoding RNA expression. Semin Cell Dev Biol. 2018;75:3–12.

    Article  CAS  PubMed  Google Scholar 

  8. Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol. 2017;14:680–92.

    Article  PubMed  Google Scholar 

  9. Sharma S, Yang J, van Nues R, Watzinger P, Kötter P, Lafontaine DLJ, et al. Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLOS Genet. 2017;13:e1006804.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Falaleeva M, Pages A, Matuszek Z, Hidmi S, Agranat-Tamir L, Korotkov K et al. Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc Natl Acad Sci. 2016;113. https://doi.org/10.1073/pnas.1519292113.

  11. Mannoor K, Shen J, Liao J, Liu Z, Jiang F. Small nucleolar RNA signatures of lung tumor-initiating cells. Mol Cancer. 2014;13:104.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Okugawa Y, Toiyama Y, Toden S, Mitoma H, Nagasaka T, Tanaka K, et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut. 2017;66:107–17.

    Article  CAS  PubMed  Google Scholar 

  13. Ma Y, Shen N, Wicha MS, Luo M. The roles of the Let-7 family of microRNAs in the regulation of cancer stemness. Cells. 2021;10:2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int J Mol Sci. 2019;21:132.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bouchard-Bourelle P, Desjardins-Henri C, Mathurin-St-Pierre D, Deschamps-Francoeur G, Fafard-Couture É, Garant J-M, et al. snoDB: an interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids Res. 2020;48:D220–D225.

    Article  CAS  PubMed  Google Scholar 

  16. Wu H, Qin W, Lu S, Wang X, Zhang J, Sun T, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2′-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer. 2020;19:95.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ayadi L, Galvanin A, Pichot F, Marchand V, Motorin Y. RNA ribose methylation (2′-O-methylation): Occurrence, biosynthesis and biological functions. Biochim Biophys Acta BBA Gene Regul Mech. 2019;1862:253–69.

    Article  CAS  Google Scholar 

  18. Piekna-Przybylska D, Decatur WA, Fournier MJ. The 3D rRNA modification maps database: with interactive tools for ribosome analysis. Nucleic Acids Res. 2007;36:D178–D183.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yoshihama M, Nakao A, Kenmochi N. snOPY: a small nucleolar RNA orthological gene database. BMC Res Notes. 2013;6:426.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jorjani H, Kehr S, Jedlinski DJ, Gumienny R, Hertel J, Stadler PF, et al. An updated human snoRNAome. Nucleic Acids Res. 2016;44:5068–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lui L, Lowe T. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem. 2013;54:53–77.

    Article  CAS  PubMed  Google Scholar 

  22. Dong Z-W, Shao P, Diao L-T, Zhou H, Yu C-H, Qu L-H. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res. 2012;40:e157–e157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cao P, Yang A, Wang R, Xia X, Zhai Y, Li Y, et al. Germline duplication of SNORA18L5 increases risk for HBV-related hepatocellular carcinoma by altering localization of ribosomal proteins and decreasing levels of p53. Gastroenterology. 2018;155:542–56.

    Article  CAS  PubMed  Google Scholar 

  24. Lin Y, Liu T, Cui T, Wang Z, Zhang Y, Tan P, et al. RNAInter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res. 2020;48:D189–D197.

    Article  CAS  PubMed  Google Scholar 

  25. Liang J, Wen J, Huang Z, Chen X, Zhang B, Chu L. Small nucleolar RNAs: insight into their function in cancer. Front Oncol. 2019;9:587.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K, et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018;46:9289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott MS, Ono M, Yamada K, Endo A, Barton GJ, Lamond AI. Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Res. 2012;40:3676–88.

    Article  CAS  PubMed  Google Scholar 

  28. Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, et al. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature. 2011;469:559–63.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Z, Lin J, Ye K. Box C/D guide RNAs recognize a maximum of 10 nt of substrates. Proc Natl Acad Sci. 2016;113:10878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 2009;94:83–88.

    Article  CAS  PubMed  Google Scholar 

  31. Hoeppner MP, White S, Jeffares DC, Poole AM. Evolutionarily stable association of intronic snoRNAs and microRNAs with their host genes. Genome Biol Evol. 2009;1:420–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14:695–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elliott BA, Ho H-T, Ranganathan SV, Vangaveti S, Ilkayeva O, Abou Assi H, et al. Modification of messenger RNA by 2′-O-methylation regulates gene expression in vivo. Nat Commun. 2019;10:3401.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Motorin Y, Marchand V. Detection and analysis of RNA ribose 2’-O-methylations: challenges and solutions. Genes. 2018;9:642.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abe M, Naqvi A, Hendriks G-J, Feltzin V, Zhu Y, Grigoriev A, et al. Impact of age-associated increase in 2’-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev. 2014;28:44–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liang H, Jiao Z, Rong W, Qu S, Liao Z, Sun X, et al. 3’-Terminal 2’-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020;48:7027–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wajahat M, Bracken CP, Orang A. Emerging functions for snoRNAs and snoRNA-derived fragments. Int J Mol Sci. 2021;22:10193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thorenoor N, Slaby O. Small nucleolar RNAs functioning and potential roles in cancer. Tumor Biol. 2015;36:41–53.

    Article  CAS  Google Scholar 

  40. Gong J, Li Y, Liu C, Xiang Y, Li C, Ye Y, et al. A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep. 2017;21:1968–81.

    Article  CAS  PubMed  Google Scholar 

  41. Concordet J-P, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–W245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (82172357, 82293662), Key project of Shanghai “Science and Technology Innovation Action Plan” (22JC1402300), Clinical Research Plan of Shanghai Hospital Development Center (SHDC2020CR2061B), the Joint Project of Pudong New Area Municipal Health Commission of Shanghai (PW2019D-10), and Shanghai Sailing Program (20YF1428600).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, QP and FS; Methodology, ZB, CX and YX; Clinical samples and information collection, YX, XW, YC, QW and NH. Statistical Analysis, ZB, SM, YX and JZ. Animal experiment, ZB, CX and YZ. Investigation, ZB, CX and JZ. Writing-Original Draft, ZB; Supervision, QP and FS. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Fenyong Sun or Qiuhui Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Z., Xu, C., Xie, Y. et al. SNORD11B-mediated 2′-O-methylation of primary let-7a in colorectal carcinogenesis. Oncogene 42, 3035–3046 (2023). https://doi.org/10.1038/s41388-023-02808-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02808-1

This article is cited by

Search

Quick links