Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer

Abstract

The nuclear factor erythroid 2-like 2 (NFE2L2; NRF2) signaling pathway is frequently deregulated in human cancers. The critical functions of NRF2, other than its transcriptional activation, in cancers remain largely unknown. Here, we uncovered a previously unrecognized role of NRF2 in the regulation of RNA splicing. Global splicing analysis revealed that NRF2 knockdown in non-small cell lung cancer (NSCLC) A549 cells altered 839 alternative splicing (AS) events in 485 genes. Mechanistic studies demonstrated that NRF2 transcriptionally regulated SMN mRNA expression by binding to two antioxidant response elements in the SMN1 promoter. Post-transcriptionally, NRF2 was physically associated with the SMN protein. The Neh2 domain of NRF2, as well as the YG box and the region encoded by exon 7 of SMN, were required for their interaction. NRF2 formed a complex with SMN and Gemin2 in nuclear gems and Cajal bodies. Furthermore, the NRF2–SMN interaction regulated RNA splicing by expressing SMN in NRF2-knockout HeLa cells, reverting some of the altered RNA splicing. Moreover, SMN overexpression was significantly associated with alterations in the NRF2 pathway in patients with lung squamous cell carcinoma from The Cancer Genome Atlas. Taken together, our findings suggest a novel therapeutic strategy for cancers involving an aberrant NRF2 pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNA Seq analysis of A549 NSCLC cells with NRF2-knockdown.
Fig. 2: NRF2 regulates SMN expression.
Fig. 3: NRF2 interacts with SMN.
Fig. 4: Co-localization of NRF2 with SMN, Coilin, and Gemin2 in vivo.
Fig. 5: SMN1 mRNA expression strongly increases with NRF2 pathway alteration in squamous cell lung cancer.
Fig. 6: RNA Seq analysis of A549 NSCLC cells with SMN-knockdown.
Fig. 7: Changes of SEs after NRF2-knockdown are associated with those of SMN-knockdown.
Fig. 8: Proposed model for NRF2–SMN interaction mediating alternative splicing in NSCLC lung cancer.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this paper and its supplementary files. The RNA-Seq and ChIP-seq data of raw and aligned files have been deposited in NCBI Gene Expression Omnibus, accession number GSE164720 and 141497, respectively.

References

  1. Urbanski LM, Leclair N, Anczukow O. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip Rev RNA. 2018;9:e1476.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang BD, Lee NH. Aberrant RNA splicing in cancer and drug resistance. Cancers. 2018;10:458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25:162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003;278:21592–600.

    Article  CAS  PubMed  Google Scholar 

  5. Tong KI, Kobayashi A, Katsuoka F, Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem. 2006;387:1311–20.

    Article  CAS  PubMed  Google Scholar 

  6. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA. 2002;99:11908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39:199–218.

    Article  CAS  PubMed  Google Scholar 

  9. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34:176–88.

    Article  CAS  PubMed  Google Scholar 

  10. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  11. Namani A, Cui QQ, Wu Y, Wang H, Wang XJ, Tang X. NRF2-regulated metabolic gene signature as a prognostic biomarker in non-small cell lung cancer. Oncotarget. 2017;8:69847–62.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raimer AC, Gray KM, Matera AG. SMN - a chaperone for nuclear RNP social occasions? RNA Biol. 2017;14:701–11.

    Article  PubMed  Google Scholar 

  13. Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays. 2003;25:1147–9.

    Article  PubMed  Google Scholar 

  14. Will CL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. 2001;13:290–301.

    Article  CAS  PubMed  Google Scholar 

  15. Neugebauer KM. Special focus on the Cajal Body. RNA Biol. 2017;14:669–70.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet. 2017;136:1173–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med. 2011;50:1599–609.

    Article  CAS  PubMed  Google Scholar 

  18. Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci USA. 2014;111:E5593–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  PubMed  Google Scholar 

  20. Thomas-Chollier M, Hufton A, Heinig M, O'Keeffe S, Masri NE, Roider HG, et al. Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc. 2011;6:1860–9.

    Article  CAS  PubMed  Google Scholar 

  21. Martin R, Gupta K, Ninan NS, Perry K, Van, Duyne GD. The survival motor neuron protein forms soluble glycine zipper oligomers. Structure. 2012;20:1929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seng CO, Magee C, Young PJ, Lorson CL, Allen JP. The SMN structure reveals its crucial role in snRNP assembly. Hum Mol Genet. 2015;24:2138–46.

    Article  CAS  PubMed  Google Scholar 

  23. Burghes AH, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci. 2009;10:597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79.

    Article  CAS  PubMed  Google Scholar 

  26. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, et al. Function of alternative splicing. Gene. 2005;344:1–20.

    Article  CAS  PubMed  Google Scholar 

  27. Ghigna C, Valacca C, Biamonti G. Alternative splicing and tumor progression. Curr Genom. 2008;9:556–70.

    Article  CAS  Google Scholar 

  28. Venables JP. Unbalanced alternative splicing and its significance in cancer. Bioessays. 2006;28:378–86.

    Article  CAS  PubMed  Google Scholar 

  29. Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol. 2009;16:670–6.

    Article  CAS  PubMed  Google Scholar 

  30. David CJ, Manley JL. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 2010;24:2343–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rambout X, Dequiedt F, Maquat LE. Beyond transcription: roles of transcription factors in Pre-mRNA splicing. Chem Rev. 2018;118:4339–64.

    Article  CAS  PubMed  Google Scholar 

  32. Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015;525:384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nizzardo M, Nardini M, Ronchi D, Salani S, Donadoni C, Fortunato F, et al. Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Exp Neurol. 2011;229:214–25.

    Article  CAS  PubMed  Google Scholar 

  34. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–65.

    Article  CAS  PubMed  Google Scholar 

  35. Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet. 1998;19:63–6.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Liu K, Zhang J, Hai Y, Wang P, Wang H, et al. c-Jun NH2 -Terminal protein kinase phosphorylates the Nrf2-ECH homology 6 domain of nuclear factor erythroid 2-related factor 2 and downregulates cytoprotective genes in acetaminophen-induced liver injury in mice. Hepatology. 2020;71:1787–801.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Wang H, Zheng Z, Luo L, Wang P, Liu K, et al. Mkp-1 cross-talks with Nrf2/Ho-1 pathway protecting against intestinal inflammation. Free Radic Biol Med. 2018;124:541–9.

    Article  CAS  PubMed  Google Scholar 

  38. Luo L, Chen Y, Wang H, Wang S, Liu K, Li X, et al. Mkp-1 protects mice against toxin-induced liver damage by promoting the Nrf2 cytoprotective response. Free Radic Biol Med. 2018;115:361–70.

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Liu K, Geng M, Gao P, Wu X, Hai Y, et al. RXRalpha inhibits the NRF2-ARE signalling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 2013;73:3097–108.

    Article  CAS  PubMed  Google Scholar 

  40. Bruns AF, van Bergeijk J, Lorbeer C, Nolle A, Jungnickel J, Grothe C, et al. Fibroblast growth factor-2 regulates the stability of nuclear bodies. Proc Natl Acad Sci USA. 2009;106:12747–52.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nolle A, Zeug A, van Bergeijk J, Tonges L, Gerhard R, Brinkmann H, et al. The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Hum Mol Genet. 2011;20:4865–78.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Peter Claus (Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany) for providing the plasmids pEGFP-N2-SMN-1-294 and pET41a- SMN-1-294, and pEGFP-N2-Coilin, Prof. Qiming Sun (Zhejiang University, China) for providing Furipw vector, Prof. Hong-He Zhang and Prof. Yin-Jie Wang (Zhejiang University, China) for comments on the MS. We thank Yanwei Li, Guifeng Xiao, Wei Yin, Zhaoxiaonan Lin and Sanhua Fang from the Core Facilities, Zhejiang University School of Medicine for their technical support. We thank GENERGY BIO-TECHNOLOGY (SHANGHAI) CO., LTD. for RNA-Seq and data analysis. We also thank Lab members Miss Yi-jiao Liao, Miss Yu Tian and Mr. Yemin Shan for technical help. This work was supported by grants from the National Natural Science Foundation of China (31971188 to XT, 91643110 to XJW and 31700690 to YW).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XT and XJW; Methodology: QC, WW, AN, HW, AH, PH, YG, ME, YW, XJW and XT; Investigation: QC, WW, AN, HW, AH, YG, ME, XJW and XT; Writing—original draft: XT and XJW; Writing—revision: XT; Funding Acquisition: XT, XJW, PH and YW. Supervision: XT.

Corresponding authors

Correspondence to Xiu Jun Wang or Xiuwen Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Wang, W., Namani, A. et al. NRF2 has a splicing regulatory function involving the survival of motor neuron (SMN) in non-small cell lung cancer. Oncogene 42, 2751–2763 (2023). https://doi.org/10.1038/s41388-023-02799-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02799-z

Search

Quick links