Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of NFAT by HGF and IGF-1 via ARF6 and its effector ASAP1 promotes uveal melanoma metastasis

A Correction to this article was published on 08 September 2023

This article has been updated

Abstract

Preventing or effectively treating metastatic uveal melanoma (UM) is critical because it occurs in about half of patients and confers a very poor prognosis. There is emerging evidence that hepatocyte growth factor (HGF) and insulin-like growth factor 1 (IGF-1) promote metastasis and contribute to the striking metastatic hepatotropism observed in UM metastasis. However, the molecular mechanisms by which HGF and IGF-1 promote UM liver metastasis have not been elucidated. ASAP1, which acts as an effector for the small GTPase ARF6, is highly expressed in the subset of uveal melanomas most likely to metastasize. Here, we found that HGF and IGF-1 hyperactivate ARF6, leading to its interaction with ASAP1, which then acts as an effector to induce nuclear localization and transcriptional activity of NFAT1. Inhibition of any component of this pathway impairs cellular invasiveness. Additionally, knocking down ASAP1 or inhibiting NFAT signaling reduces metastasis in a xenograft mouse model of UM. The discovery of this signaling pathway represents not only an advancement in our understanding of the biology of uveal melanoma metastasis but also identifies a novel pathway that could be targeted to treat or prevent metastatic uveal melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ARF6 is hyperactivated by HGF and IGF-1 and promotes invasion of uveal melanoma cells.
Fig. 2: ASAP1 is required for invasion and metastasis of uveal melanoma.
Fig. 3: Activated ARF6 increases NFAT1 nuclear localization and transcriptional activity.
Fig. 4: Activated ARF6 and ASAP1 are required for both IGF-1- and HGF-induced NFAT1 nuclear localization and transcriptional activity.
Fig. 5: Calcineurin and NFAT inhibitors reduce invasion of uveal melanoma cells.
Fig. 6: Inhibition of NFAT reduces metastasis in vivo.

Similar content being viewed by others

Data availability

All data that support the results of this study can be found within the main text and figures of this paper or in the Supplementary information.

Change history

References

  1. Damato EM, Damato BE. Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2,384 patients. Ophthalmology. 2012;119:1582–9.

    Article  PubMed  Google Scholar 

  2. Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 2017;11:279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yavuzyigitoglu S, Koopmans AE, Verdijk RM, Vaarwater J, Eussen B, van Bodegom A, et al. Uveal melanomas with SF3B1 mutations: a distinct subclass associated with late-onset metastases. Ophthalmology. 2016;123:1118–28.

    Article  PubMed  Google Scholar 

  4. Grossniklaus HE. Understanding uveal melanoma metastasis to the liver: The Zimmerman effect and the Zimmerman hypothesis. Ophthalmology. 2019;126:483–7.

    Article  PubMed  Google Scholar 

  5. Khoja L, Atenafu EG, Suciu S, Leyvraz S, Sato T, Marshall E, et al. Meta-analysis in metastatic uveal melanoma to determine progression free and overall survival benchmarks: an international rare cancers initiative (IRCI) ocular melanoma study. Ann Oncol. 2019;30:1370–80.

    Article  CAS  PubMed  Google Scholar 

  6. Rowcroft A, Loveday BPT, Thomson BNJ, Banting S, Knowles B. Systematic review of liver directed therapy for uveal melanoma hepatic metastases. HPB (Oxford). 2020;22:497–505.

    Article  PubMed  Google Scholar 

  7. Schank TE, Hassel JC. Immunotherapies for the treatment of uveal melanoma-history and future. Cancers (Basel). 2019;11:1048.

    Article  CAS  PubMed  Google Scholar 

  8. Piperno-Neumann S, Larkin J, Carvajal RD, Luke JJ, Schwartz GK, Hodi FS, et al. Genomic profiling of metastatic uveal melanoma and clinical results of a phase I study of the protein kinase C inhibitor AEB071. Mol Cancer Ther. 2020;19:1031–9.

    Article  CAS  PubMed  Google Scholar 

  9. Falchook GS, Lewis KD, Infante JR, Gordon MS, Vogelzang NJ, DeMarini DJ, et al. Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, et al. Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a phase III, multicenter, randomized trial (SUMIT). J Clin Oncol. 2018;36:1232–9.

    Article  CAS  PubMed  Google Scholar 

  11. Field MG, Durante MA, Anbunathan H, Cai LZ, Decatur CL, Bowcock AM, et al. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun. 2018;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51:1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rao PK, Barker C, Coit DG, Joseph RW, Materin M, Rengan R, et al. NCCN guidelines insights: uveal melanoma, version 1.2019. J Natl Compr Canc Netw. 2020;18:120–31.

    PubMed  Google Scholar 

  14. Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32:204–220 e215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Worley LA, Onken MD, Person E, Robirds D, Branson J, Char DH, et al. Transcriptomic versus chromosomal prognostic markers and clinical outcome in uveal melanoma. Clin Cancer Res. 2007;13:1466–71.

    Article  CAS  PubMed  Google Scholar 

  17. Decatur CL, Ong E, Garg N, Anbunathan H, Bowcock AM, Field MG, et al. Driver mutations in uveal melanoma: associations with gene expression profile and patient outcomes. JAMA Ophthalmol. 2016;134:728–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 2020;11:496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka R, Terai M, Londin E, Sato T. The role of HGF/MET signaling in metastatic uveal melanoma. Cancers (Basel). 2021;13:5457.

    Article  CAS  PubMed  Google Scholar 

  20. Oba J, Esmaeli B, Ellerhorst JA, Lyons GR, Milton DR, Wang WL, et al. Trends in hepatocyte growth factor, insulin-like growth factor 1, thyroid-stimulating hormone, and leptin expression levels in uveal melanoma patient serum and tumor tissues: correlation to disease progression. Melanoma Res. 2017;27:126–33.

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida M, Selvan S, McCue PA, DeAngelis T, Baserga R, Fujii A, et al. Expression of insulin-like growth factor-1 receptor in metastatic uveal melanoma and implications for potential autocrine and paracrine tumor cell growth. Pigment Cell Melanoma Res. 2014;27:297–308.

    Article  CAS  PubMed  Google Scholar 

  22. Frenkel S, Zloto O, Pe’er J, Barak V. Insulin-like growth factor-1 as a predictive biomarker for metastatic uveal melanoma in humans. Invest Ophthalmol Vis Sci. 2013;54:490–3.

    Article  CAS  PubMed  Google Scholar 

  23. Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, et al. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell. 2016;29:889–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grossmann AH, Zhao H, Jenkins N, Zhu W, Richards JR, Yoo JH, et al. The small GTPase ARF6 regulates protein trafficking to control cellular function during development and in disease. Small GTPases. 2019;10:1–12.

    Article  CAS  PubMed  Google Scholar 

  25. Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A, et al. Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA. 2004;101:6647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palacios F, Price L, Schweitzer J, Collard JG, D’Souza-Schorey C. An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J. 2001;20:4973–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ratcliffe CDH, Siddiqui N, Coelho PP, Laterreur N, Cookey TN, Sonenberg N, et al. HGF-induced migration depends on the PI(3,4,5)P3-binding microexon-spliced variant of the Arf6 exchange factor cytohesin-1. J Cell Biol. 2019;218:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Furman C, Short SM, Subramanian RR, Zetter BR, Roberts TM. DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism. J Biol Chem. 2002;277:7962–9.

    Article  CAS  PubMed  Google Scholar 

  29. Sabe H, Hashimoto S, Morishige M, Ogawa E, Hashimoto A, Nam JM, et al. The EGFR-GEP100-Arf6-AMAP1 signaling pathway specific to breast cancer invasion and metastasis. Traffic. 2009;10:982–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laurent C, Valet F, Planque N, Silveri L, Maacha S, Anezo O, et al. High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients. Cancer Res. 2011;71:666–74.

    Article  CAS  PubMed  Google Scholar 

  31. Ehlers JP, Worley L, Onken MD, Harbour JW. DDEF1 is located in an amplified region of chromosome 8q and is overexpressed in uveal melanoma. Clin Cancer Res. 2005;11:3609–13.

    Article  CAS  PubMed  Google Scholar 

  32. Li R, Peng C, Zhang X, Wu Y, Pan S, Xiao Y. Roles of Arf6 in cancer cell invasion, metastasis and proliferation. Life Sci. 2017;182:80–84.

    Article  CAS  PubMed  Google Scholar 

  33. Perrin L, Belova E, Bayarmagnai B, Tuzel E, Gligorijevic B. Invadopodia enable cooperative invasion and metastasis of breast cancer cells. Commun Biol. 2022;5:758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Res. 2004;64:7205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Onodera Y, Hashimoto S, Hashimoto A, Morishige M, Mazaki Y, Yamada A, et al. Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. EMBO J. 2005;24:963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muller MR, Rao ANFAT. immunity and cancer: a transcription factor comes of age. Nat Rev Immunol. 2010;10:645–56.

    Article  PubMed  Google Scholar 

  37. Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell. 2002;109:S67–79.

    Article  CAS  PubMed  Google Scholar 

  38. Aramburu J, Yaffe MB, Lopez-Rodriguez C, Cantley LC, Hogan PG, Rao A. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science. 1999;285:2129–33.

    Article  CAS  PubMed  Google Scholar 

  39. Noguchi H, Matsushita M, Okitsu T, Moriwaki A, Tomizawa K, Kang S, et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat Med. 2004;10:305–9.

    Article  CAS  PubMed  Google Scholar 

  40. Collaborative Ocular Melanoma Study G Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15. Arch Ophthalmol. 2001;119:670–6.

    Article  Google Scholar 

  41. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perotti V, Baldassari P, Bersani I, Molla A, Vegetti C, Tassi E, et al. NFATc2 is a potential therapeutic target in human melanoma. J Invest Dermatol. 2012;132:2652–60.

    Article  CAS  PubMed  Google Scholar 

  44. Shoshan E, Braeuer RR, Kamiya T, Mobley AK, Huang L, Vasquez ME, et al. NFAT1 directly regulates IL8 and MMP3 to promote melanoma Tumor Growth and Metastasis. Cancer Res. 2016;76:3145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, et al. NFAT as cancer target: mission possible? Biochim Biophys Acta. 2014;1846:297–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Grossmann AH, Yoo JH, Clancy J, Sorensen LK, Sedgwick A, Tong Z, et al. The small GTPase ARF6 stimulates beta-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal. 2013;6:ra14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gabriel CH, Gross F, Karl M, Stephanowitz H, Hennig AF, Weber M, et al. Identification of novel nuclear factor of activated T cell (NFAT)-associated proteins in T cells. J Biol Chem. 2016;291:24172–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, et al. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res. 2014;42:9047–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu W, London NR, Gibson CC, Davis CT, Tong Z, Sorensen LK, et al. Interleukin receptor activates a MYD88-ARNO-ARF6 cascade to disrupt vascular stability. Nature. 2012;492:252–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Onken MD, Worley LA, Person E, Char DH, Bowcock AM, Harbour JW. Loss of heterozygosity of chromosome 3 detected with single nucleotide polymorphisms is superior to monosomy 3 for predicting metastasis in uveal melanoma. Clin Cancer Res. 2007;13:2923–7.

    Article  CAS  PubMed  Google Scholar 

  51. Onken MD, Worley LA, Tuscan MD, Harbour JW. An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. J Mol Diagn. 2010;12:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Lim for graphics preparation. This research utilized both University of Utah and Huntsman Cancer Institute shared research resources including the Preclinical Research Resource, DNA Sequencing Core Facility, Bioinformatics Core Facility, and Fluorescence Microscopy Core Facility and was supported in part by the National Cancer Institute of the National Institutes of Health under Award Number P30CA042014. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Funding

This study was supported by the National Cancer Institute R00CA230312 (JHY), the Department of Defense Melanoma Research Program ME190288 (JHY), the Melanoma Research Foundation 51005681 (JHY), the National Institute of General Medical Sciences COBRE P20GM121316 (JHY), F30CA217184 (JRR), F30CA235964 (AT) and R01CA202778 (SJO).

Author information

Authors and Affiliations

Authors

Contributions

SJO and JHY were responsible for conceptualization, experimental design, data analysis, and manuscript preparation. JHY primarily performed and collected data for in vitro experiments. JRR and DS primarily performed and collected data for in vivo experiments. RP, ZS, WMS, GP, and AT performed in vitro/in vivo experiments. LKS performed immunocytofluorescent staining. RW performed bioinformatic analyses. AHG provided histology and pathology expertise. MM, AHG, JWH, and WZ provided resources and critical review of the manuscript. All authors read the manuscript, agree with the content, and were given the opportunity to provide input.

Corresponding authors

Correspondence to Shannon J. Odelberg or Jae Hyuk Yoo.

Ethics declarations

Competing interests

JWH is the inventor of intellectual property related to prognostic testing in uveal melanoma. He is a paid consultant for Castle Biosciences, licensee of this intellectual property, and he receives royalties from its commercialization.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, J.R., Shin, D., Pryor, R. et al. Activation of NFAT by HGF and IGF-1 via ARF6 and its effector ASAP1 promotes uveal melanoma metastasis. Oncogene 42, 2629–2640 (2023). https://doi.org/10.1038/s41388-023-02792-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02792-6

Search

Quick links