Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent organic pollutants promote aggressiveness in prostate cancer

Abstract

Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin’s lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc−/− mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dioxin and PCB-153 promotes growth of mouse prostate organoids and of PCa cells.
Fig. 2: Dioxin and PCB-153 induce migration and invasion of PCa cells in vivo.
Fig. 3: Ptenpc−/− mice chronically exposed to dioxin and PCB-153 exhibit hallmarks of carcinoma development.
Fig. 4: Dioxin and PCB-153 target ACAT1 deregulation to increase migration of PCa cells.
Fig. 5: Dioxin and PCB-153 enhance invasive phenotype in vivo and is correlated with ACAT1 overexpression.
Fig. 6: AHR binds Acat1 promoter in response to dioxin and PCB-153.
Fig. 7: ACAT1 is a marker of dioxin exposure in PCa.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. International Agency for Research on Cancer Working Group on the Evaluation of Carcinogenic Risks to Humans. 2,3,7,8-tetrachlorodibenzo-para-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 3,3′,4,4′,5-pentachlorobiphenyl. In: Chemical agents and related occupations - IARC monographs on the evaluation of carcinogenic risks to humans, 100F. 2012.

  2. International Agency for Research on Cancer Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated biphenyls and polybrominated biphenyls. IARC monographs on the evaluation of carcinogenic risks to humans, 107; 2016.

  3. Hardell L, Andersson SO, Carlberg M, Bohr L, Van Bavel B, Lindström G, et al. Adipose tissue concentrations of persistent organic pollutants and the risk of prostate cancer. J Occup Environ Med. 2006;48:700–7.

    Article  CAS  PubMed  Google Scholar 

  4. Ali I, Julin B, Glynn A, Högberg J, Berglund M, Johansson JE, et al. Exposure to polychlorinated biphenyls and prostate cancer: Population-based prospective cohort and experimental studies. Carcinogenesis 2016;37:1144–51.

    CAS  PubMed  Google Scholar 

  5. Xu J, Ye Y, Huang F, Chen H, Wu H, Huang J, et al. Association between dioxin and cancer incidence and mortality: a meta-analysis. Sci Rep. 2016;6:38012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emeville E, Giusti A, Coumoul X, Thomé JP, Blanchet P, Multigner L. Associations of plasma concentrations of dichlorodiphenyldichloroethylene and polychlorinated biphenyls with prostate cancer: a case–control study in Guadeloupe (French West Indies). Environ Health Perspect. 2015;123:317–23.

    Article  PubMed  Google Scholar 

  7. Leng L, Chen X, Li CP, Luo XY, Tang NJ. 2,3,7,8-Tetrachlorodibezo-p-dioxin exposure and prostate cancer: A meta-analysis of cohort studies. Public Health. 2014;128:207–13.

    Article  CAS  PubMed  Google Scholar 

  8. Dragan YP, Schrenk D. Animal studies addressing the carcinogenicity of TCDD (or related compounds) with an emphasis on tumour promotion. Food Addit Contam. 2000;17:289–302.

    Article  CAS  PubMed  Google Scholar 

  9. Moore RW, Fritz WA, Schneider AJ, Lin TM, Branam AM, Safe S, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice. Toxicol Appl Pharmacol. 2016;305:242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murray IA, Patterson AD, Perdew GH. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat Rev Cancer. 2014;14:801–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kollara A, Brown TJ. Four and a half LIM domain 2 alters the impact of aryl hydrocarbon receptor on androgen receptor transcriptional activity. J Steroid Biochem Mol Biol. 2010;118:51–58.

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  13. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  14. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  PubMed  Google Scholar 

  15. Lynen F, Ochoa S. Enzymes of fatty acid metabolism. BBA - Biochim Biophys Acta. 1953;1000:281–96.

    Google Scholar 

  16. Middleton B, Bartlett K, Romanos A, Vazquez JG, Conde C, Cannon RA, et al. 3-Ketothiolase deficiency. Eur J Pediatr. 1986;144:586–9.

    Article  CAS  PubMed  Google Scholar 

  17. Haapalainen AM, Meriläinen G, Wierenga RK. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem Sci. 2006;31:64–71.

    Article  CAS  PubMed  Google Scholar 

  18. Haapalainen AM, Meriläinen G, Pirilä PL, Kondo N, Fukao T, Wierenga RK. Crystallographic and kinetic studies of human mitochondrial acetoacetyl-CoA thiolase: The importance of potassium and chloride ions for its structure and function. Biochemistry. 2007;46:4305–21.

    Article  CAS  PubMed  Google Scholar 

  19. Fan J, Shan C, Kang HB, Elf S, Xie J, Tucker M, et al. Tyr phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Mol Cell. 2014;53:534–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, et al. Tetrameric acetyl-CoA acetyltransferase 1 is important for tumor growth. Mol Cell. 2016;64:859–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, et al. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol Cell Proteom. 2013;12:1589–601.

    Article  CAS  Google Scholar 

  22. Saraon P, Trudel D, Kron K, Dmitromanolakis A, Trachtenberg J, Bapat B, et al. Evaluation and prognostic significance of ACAT1 as a marker of prostate cancer progression. Prostate. 2014;74:372–80.

    Article  CAS  PubMed  Google Scholar 

  23. Vezina CM, Lin TM, Peterson RE. AHR signaling in prostate growth, morphogenesis, and disease. Biochem. Pharmacol. 2009;77:566–76.

    Article  CAS  PubMed  Google Scholar 

  24. Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenic chemicals. Proc Soc Exp Biol Med. 2000;224:61–68.

    Article  CAS  PubMed  Google Scholar 

  25. Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc. 2016;11:347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, Van Boxtel R, Wongvipat J, et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 2014;159:163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee HM, Hwang KA, Choi KC. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol Cell Endocrinol. 2017;457:103–13.

    Article  CAS  PubMed  Google Scholar 

  28. Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;3:209–21.

    Article  Google Scholar 

  29. Fletcher N, Wahlström D, Lundberg R, Nilsson CB, Nilsson KC, Stockling K, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters the mRNA expression of critical genes associated with cholesterol metabolism, bile acid biosynthesis, and bile transport in rat liver: a microarray study. Toxicol Appl Pharmacol. 2005;207:1–24.

    Article  CAS  PubMed  Google Scholar 

  30. Cholico GN, Fling RR, Zacharewski NA, Fader KA, Nault R, Zacharewski TR. Thioesterase induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin results in a futile cycle that inhibits hepatic β-oxidation. Sci Rep. 2021;11:15689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Labanca E, Bizzotto J, Sanchis P, Anselmino N, Yang J, Shepherd PDA, et al. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene. 2021;40:6284–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gearing LJ, Cumming HE, Chapman R, Finkel AM, Woodhouse IB, Luu K, et al. CiIIder: A tool for predicting and analysing transcription factor binding sites. PLoS ONE. 2019;14:e0215495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Pei X, Zhang W, Xie HQ, Zhao B. Functional analysis of the dioxin response elements (DREs) of the murine CYP1A1 gene promoter: beyond the core DRE sequence. Int J Mol Sci. 2014;15:6475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dere E, Lo R, Celius T, Matthews J, Zacharewski TR. Integration of genome-wide computation DRE search, AhR ChIP-chip and gene expression analyses of TCDD-elicited responses in the mouse liver. BMC Genomics. 2011;12:365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poland A, Palen D, Glover E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature. 1982;300:271–3.

    Article  CAS  PubMed  Google Scholar 

  36. Knerr S, Schrenk D. Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Mol Nutr Food Res. 2006;50:897–907.

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Kumar M, Deng Q, Wang X, Liu M, Gong Z, et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces peripheral blood abnormalities and plasma cell neoplasms resembling multiple myeloma in mice. Cancer Lett. 2019;440-441:135–44.

    Article  CAS  PubMed  Google Scholar 

  38. Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, et al. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology. 2014;155:805–17.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghotbaddini M, Powell JB. The AhR ligand, TCDD, regulates androgen receptor activity differently in androgen-sensitive versus castration-resistant human prostate cancer cells. Int J Environ Res Public Health. 2015;12:7506–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peters AK, Leonards PE, Zhao B, Bergman Å, Denison MS, Van, et al. Determination of in vitro relative potency (REP) values for mono-ortho polychlorinated biphenyls after purification with active charcoal. Toxicol Lett. 2006;12:7506–18.

    Google Scholar 

  41. Kopec AK, Burgoon LD, Ibrahim-Aibo D, Mets BD, Tashiro C, Potter D, et al. PCB153-elicited hepatic responses in the immature, ovariectomized C57BL/6 mice: comparative toxicogenomic effects of dioxin and non-dioxin-like ligands. Toxicol Appl Pharmacol. 2010;243:359–71.

    Article  CAS  PubMed  Google Scholar 

  42. Villano CM, Murphy KA, Akintobi A, White LA. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicol Appl Pharmacol. 2006;210:212–24.

    Article  CAS  PubMed  Google Scholar 

  43. Diry M, Tomkiewicz C, Koehle C, Coumoul X, Bock KW, Barouki R, et al. Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene. 2006;25:5570–4.

    Article  CAS  PubMed  Google Scholar 

  44. Seifert A, Rau S, Küllertz G, Fischer B, Santos AN. TCDD induces cell migration via NFATc1/ATX-signaling in MCF-7 cells. Toxicol Lett. 2009;184:26–32.

    Article  CAS  PubMed  Google Scholar 

  45. Bui LC, Tomkiewicz C, Chevallier A, Pierre S, Bats AS, Mota S, et al. Nedd9/Hef1/Cas-L mediates the effects of environmental pollutants on cell migration and plasticity. Oncogene. 2009;28:3642–51.

    Article  CAS  PubMed  Google Scholar 

  46. Gao Z, Bu Y, Liu X, Wang X, Zhang G, Wang E, et al. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling. Toxicol Appl Pharmacol. 2016;298:48–55.

    Article  CAS  PubMed  Google Scholar 

  47. Haque M, Francis J, Sehgal I. Aryl hydrocarbon exposure induces expression of MMP-9 in human prostate cancer cell lines. Cancer Lett. 2005;225:159–66.

    Article  CAS  PubMed  Google Scholar 

  48. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33.

    Article  CAS  PubMed  Google Scholar 

  49. Shan Q, Li H, Chen N, Qu F, Guo J. Understanding the multiple effects of PCBS on lipid metabolism. Diabetes Metab Syndr Obes. 2020;13:3691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lakshman MR, Ghosh P, Chirtel SJ. Mechanism of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin on intermediary metabolism in the rat. J Pharmacol Exp Ther. 1991;258:317–9.

    CAS  PubMed  Google Scholar 

  51. Diani-Moore S, Pedro TM, Rifkind AB. Organ-specific effects on glycolysis by the dioxin-activated aryl hydrocarbon receptor. PLoS ONE. 2020;15:e0243842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ambolet-Camoit A, Ottolenghi C, Leblanc A, Kim MJ, Letourneur F, Jacques S, et al. Two persistent organic pollutants which act through different xenosensors (alpha-endosulfan and 2,3,7,8 tetrachlorodibenzo-p-dioxin) interact in a mixture and downregulate multiple genes involved in human hepatocyte lipid and glucose metabolism. Biochimie. 2015;116:79–91.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Song L, Li Z. Polychlorinated biphenyls promote cell survival through pyruvate kinase M2-dependent glycolysis in HeLa cells. Toxicol Mech Methods. 2019;29:428–37.

    Article  CAS  PubMed  Google Scholar 

  54. Martinez-Outschoorn UE, Lin Z, Whitaker-Menezes D, Howell A, Sotgia F, Lisanti MP. Ketone body utilization drives tumor growth and metastasis. Cell Cycle. 2012;11:3964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Bermudez J, Birsoy K. Drugging ACAT1 for cancer therapy. Mol Cell. 2016;64:856–7.

    Article  CAS  PubMed  Google Scholar 

  56. Mao T, Qin F, Zhang M, Li J, Li J, Lai M. Elevated serum β-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene. 2023;42:1889–99.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang G, Huang R, Zhao H, Xia Y, Huang H, Qian M, et al. ACAT1-mediated METTL3 acetylation inhibits cell migration and invasion in triple negative breast cancer. Genes Immun. 2023;24:99–107.

    Article  CAS  PubMed  Google Scholar 

  58. Guan J, Jiang X, Guo Y, Zhao W, Li J, Li Y, et al. Autophagy inhibition and reactive oxygen species elimination by acetyl-CoA acetyltransferase 1 through fused in sarcoma protein to promote prostate cancer. BMC Cancer. 2022;22:1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goudarzi A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci. 2019;232:116592.

    Article  CAS  PubMed  Google Scholar 

  60. Nault R, Fader KA, Lydic TA, Zacharewski TR. Lipidomic evaluation of aryl hydrocarbon receptor-mediated hepatic steatosis in male and female mice elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chem Res Toxicol. 2017;30:1060–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koual M, Cano-Sancho G, Bats AS, Tomkiewicz C, Kaddouch-Amar Y, Douay-Hauser N, et al. Associations between persistent organic pollutants and risk of breast cancer metastasis. Environ Int. 2019;132:105028.

    Article  CAS  PubMed  Google Scholar 

  62. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  PubMed  Google Scholar 

  63. Wu X, Wu J, Huang J, Powell WC, Zhang JF, Matusik RJ, et al. Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev. 2001;101:61–69.

    Article  CAS  PubMed  Google Scholar 

  64. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, et al. Cre/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis. 2002;32:148–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG. Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet. 2002;32:435–43.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93:223–41.

    Article  PubMed  Google Scholar 

  67. Suttie A, Nyska A, Haseman JK, Moser GJ, Hackett TR, Goldsworthy TL. A grading scheme for the assessment of proliferative lesions of the mouse prostate in the TRAMP model. Toxicol Pathol. 2003;31:31–38.

    Article  PubMed  Google Scholar 

  68. Havens AM, Pedersen EA, Shiozawa Y, Ying C, Jung Y, Sun Y, et al. An in vivo mouse model for human prostate cancer metastasis. Neoplasia. 2008;10:371–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  70. Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep. 2016;11:18631.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Sandrine Plantade, Philippe Mazuel and Khirredine Ouchen for mouse care, Anip@th technical staff (iGReD, Clermont-Ferrand) for histological analyses, SC3 and CLIC platforms (iGReD, Clermont-Ferrand) for cell manipulations and imaging, Bioinformatic platform (iGReD, Clermont-Ferrand) for computational analysis, Jean-Paul Saru for western blot analyses. We thank Dr. Arun Sreekumar and Dr. Jie Gohlke (Baylor College of Medecine, Houston) for help and fruitful discussions in the preparation/interpretation of TMA analysis. We warmly thank Kathleen Gates for careful editing of the manuscript. Part of this study was supported by Région Auvergne Rhône Alpes, Fond Européen de Développement Régional (FEDER), Plan National de Recherche sur les Perturbateurs Endocriniens (13-MRES-PNRPE-1-CVS043), Plan-Cancer 2014-2019 for Jean Marc Lobaccaro and Silvère Baron, and Ligue contre le Cancer Rhône Alpes Auvergne et Saône et Loire for Cyrille de Joussineau. JB is a postdoc funded by Plan-Cancer 2014-2019. Prostate Cancer Foundation - VALOR Challenge grant provided support for MI and JJ in the acquisition/prep of PCa tissues. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Author information

Authors and Affiliations

Authors

Contributions

Acquisition of the data: Jb, SB, JML, SD, EB, JPS, ADH. TMA conception and analysis: MI, JJ, MPV, LG, CDS, FPL, MK. Microscopic and confocal imaging: JB, CDS, MV, CdJ. AHR ChIPseq analysis: JB, YR, JM. Conception and design of the manuscript: JB, JML, SB. Analysis and interpretation of the data: JB, JML, SB. Drafting of the manuscript: JB, JML, SB. Critically revising the manuscript: JB, JML, SB, AT, FD, AK, SC, FB.

Corresponding author

Correspondence to Silvère Baron.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buñay, J., Kossai, M., Damon-Soubeyrant, C. et al. Persistent organic pollutants promote aggressiveness in prostate cancer. Oncogene 42, 2854–2867 (2023). https://doi.org/10.1038/s41388-023-02788-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02788-2

Search

Quick links