Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription

Abstract

Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PGC-1α expression is upregulated in CRC and positively associates with clinicopathological features.
Fig. 2: PGC-1α promotes CRC cell proliferation, colony formation, migration, invasion and angiogenesis.
Fig. 3: PGC-1α promotes CRC growth and metastasis through EMT.
Fig. 4: PGC-1α regulates ABCA1, and ABCA1 promotes CRC metastasis.
Fig. 5: PGC-1α regulates CRC metastasis via ABCA1.
Fig. 6: PGC-1α interacts with YY1 to regulate ABCA1 transcription.
Fig. 7: The ABCA1 inhibitor ISL suppresses PGC-1α-induced CRC metastasis, and ISL synergistically inhibits CRC metastasis with silenced PGC-1α.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.

    Article  PubMed  Google Scholar 

  3. Alhumaid A, AlYousef Z, Bakhsh HA, AlGhamdi S, Aziz MA. Emerging paradigms in the treatment of liver metastases in colorectal cancer. Crit Rev Oncol/Hematol. 2018;132:39–50.

    Article  PubMed  Google Scholar 

  4. Biller LH, Schrag D. Diagnosis and Treatment of Metastatic Colorectal Cancer. JAMA. 2021; 325:669–85.

  5. Qian X, Li X, Shi Z, Bai X, Xia Y, Zheng Y, et al. KDM3A Senses Oxygen Availability to Regulate PGC-1α-Mediated Mitochondrial Biogenesis. Mol Cell. 2019;76:885–895.e887.

    Article  CAS  PubMed  Google Scholar 

  6. Tan Z, Luo X, Xiao L, Tang M, Bode AM, Dong Z, et al. The Role of PGC1α in Cancer Metabolism and its Therapeutic Implications. Mol Cancer Ther. 2016;15:774–82.

    Article  CAS  PubMed  Google Scholar 

  7. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022;34:355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang X, Pan L, Zuo Z, Li M, Zeng L, Li R et al. LINC00842 inactivates transcription co-regulator PGC-1α to promote pancreatic cancer malignancy through metabolic remodelling. Nat Commun. 2021; 12:3830.

  9. Andrzejewski S, Klimcakova E, Johnson RM, Tabariès S, Annis MG, McGuirk S, et al. PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs. Cell Metab. 2017;26:778–787.e775.

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Yang M, Jin H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer. Mol Med Rep. 2021;24:613.

  11. Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo C, Lim J-H, Lee Y, Granter SR, Thomas A, Vazquez F, et al. A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature. 2016;537:422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D’Errico I, Lo Sasso G, Salvatore L, Murzilli S, Martelli N, Cristofaro M, et al. Bax is necessary for PGC1α pro-apoptotic effect in colorectal cancer cells. Cell Cycle. 2014;10:2937–45.

    Article  Google Scholar 

  14. Shin S-W, Yun S-H, Park E-S, Jeong J-S, Kwak J-Y, Park J-I. Overexpression of PGC-1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein. Int J Oncol. 2015;46:1328–42.

    Article  CAS  PubMed  Google Scholar 

  15. Lu J, Zhao J, Liu K, Zhao J, Yang H, Huang Y, et al. MAPK/ERK1/2 signaling mediates endothelial-like differentiation of immature DCs in the microenvironment of esophageal squamous cell carcinoma. Cell Mol life Sci. 2010;67:2091–106.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Chen Y, Zhang K, Yang W, Li X, Zhao J, et al. AGT serves as a potential biomarker and drives tumor progression in colorectal carcinoma. Int Immunopharmacol. 2021;101:108225.

    Article  CAS  PubMed  Google Scholar 

  17. Maeda Y, Motoyama K, Higashi T, Horikoshi Y, Takeo T, Nakagata N, et al. Effects of cyclodextrins on GM1-gangliosides in fibroblasts from GM1-gangliosidosis patients. J Pharm Pharmacol. 2015;67:1133–42.

    Article  CAS  PubMed  Google Scholar 

  18. Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, et al. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/ BAI1 signaling pathway. Angiogenesis. 2020;23:325–38.

    Article  PubMed  Google Scholar 

  19. Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends cell Biol. 2019;29:212–26.

    Article  CAS  PubMed  Google Scholar 

  20. Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: New functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874:188394.

    Article  CAS  PubMed  Google Scholar 

  21. Nazih H, Bard JM. Cholesterol, Oxysterols and LXRs in Breast Cancer Pathophysiology. Int J Mol Sci. 2020;21:1356.

  22. Zhao W, Prijic S, Urban BC, Tisza MJ, Zuo Y, Li L, et al. Candidate Antimetastasis Drugs Suppress the Metastatic Capacity of Breast Cancer Cells by Reducing Membrane Fluidity. Cancer Res. 2016;76:2037–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Zhou X, Lei Y, Chu Y, Yu X, Tong Q, et al. NNMT contributes to high metastasis of triple negative breast cancer by enhancing PP2A/MEK/ERK/c-Jun/ABCA1 pathway mediated membrane fluidity. Cancer Letters. 2022;547:215884.

  24. Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. Structure of the Human Lipid Exporter ABCA1. Cell. 2017;169:1228–1239.e1210.

    Article  CAS  PubMed  Google Scholar 

  25. Valcarcel-Jimenez L, Macchia A, Crosas-Molist E, Schaub-Clerigue A, Camacho L, Martin-Martin N, et al. PGC1alpha Suppresses Prostate Cancer Cell Invasion through ERRalpha Transcriptional Control. Cancer Res. 2019;79:6153–65.

    Article  CAS  PubMed  Google Scholar 

  26. Tolvanen TA. Current Advances in CETSA. Front Mol Biosci. 2022;9:866764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yun S-H, Park J-I. PGC-1α Regulates Cell Proliferation and Invasion via AKT/GSK-3β/β-catenin Pathway in Human Colorectal Cancer SW620 and SW480 Cells. Anticancer Res. 2020;40:653–64.

    Article  CAS  PubMed  Google Scholar 

  28. Yun CW, Han Y-S, Lee SH. PGC-1α Controls Mitochondrial Biogenesis in Drug-Resistant Colorectal Cancer Cells by Regulating Endoplasmic Reticulum Stress. Int J Mol Sci. 2019;20:1707.

  29. Gravel S-P Deciphering the Dichotomous Effects of PGC-1α on Tumorigenesis and Metastasis. Frontiers in Oncology. 2018; 8.

  30. LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis Marcia C, et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16:992–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Xu S, Li J, Zheng L, Feng M, Wang X, et al. SIRT1 facilitates hepatocellular carcinoma metastasis by promoting PGC-1α-mediated mitochondrial biogenesis. Oncotarget. 2016;7:29255–74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Viaud M, Abdel-Wahab O, Gall J, Ivanov S, Guinamard R, Sore S, et al. ABCA1 Exerts Tumor-Suppressor Function in Myeloproliferative Neoplasms. Cell Rep. 2020;30:3397–3410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aguirre‐Portolés C, Feliu J, Reglero G, Ramírez de Molina A. ABCA1 overexpression worsens colorectal cancer prognosis by facilitating tumour growth and caveolin‐1‐dependent invasiveness, and these effects can be ameliorated using the BET inhibitor apabetalone. Mol Oncol. 2018;12:1735–52.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hedditch EL, Gao B, Russell AJ, Lu Y, Emmanuel C, Beesley J, et al. ABCA Transporter Gene Expression and Poor Outcome in Epithelial Ovarian Cancer. Journal of the National Cancer Institute. 2014;106:dju149.

  35. Fernandez LP, Ramos-Ruiz R, Herranz J, Martin-Hernandez R, Vargas T, Mendiola M, et al. The transcriptional and mutational landscapes of lipid metabolism-related genes in colon cancer. Oncotarget. 2018;9:5919–30.

    Article  PubMed  Google Scholar 

  36. Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, et al. Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression. Cell Metab. 2019;29:1376–1389.e1374.

    Article  CAS  PubMed  Google Scholar 

  37. Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, et al. Long non‐coding RNA cox‐2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem. 2017;119:2951–63.

    Article  PubMed  Google Scholar 

  38. Zhu L, Fu X, Chen X, Han X, Dong P. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. Cell Biol Int. 2017;41:960–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou H, Gan M, Jin X, Dai M, Wang Y, Lei Y, et al. miR‑382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor‑associated macrophages by targeting PGC‑1α. Int J Oncol. 2022;61:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng MYW, Charsou C, Lapao A, Singh S, Trachsel-Moncho L, Schultz SW, et al. The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics. Nature. Communications. 2022;13:6283.

    CAS  Google Scholar 

  41. Wang J, Wu X, Dai W, Li J, Xiang L, Tang W, et al. The CCDC43-ADRM1 axis regulated by YY1, promotes proliferation and metastasis of gastric cancer. Cancer Lett. 2020;482:90–101.

    Article  CAS  PubMed  Google Scholar 

  42. Yang P, Li J, Peng C, Tan Y, Chen R, Peng W, et al. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3K‐AKT axis in colorectal cancer. Clinical and Translational Medicine. 2020;10:e211.

  43. You Q, Yao Y, Wu J, Cheng C, Li Y, Yuan H. YY1-induced lncRNA DSCR8 promotes the progression of ovarian cancer via miR-3192-5p/YY1 axis. Biomedicine & Pharmacotherapy. 2020; 129:110339.

  44. Ohtomo T, Horii T, Nomizu M, Suga T, Yamada J. Molecular cloning of a structural homolog of YY1AP, a coactivator of the multifunctional transcription factor YY1. Amino Acids. 2007;33:645–52.

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature 2007;450:736–40.

    Article  CAS  PubMed  Google Scholar 

  46. Chuang L-Y, Guh J-Y, Ye Y-L, Lee Y-H, Huang J-S. Effects of probucol on cell proliferation in human ovarian cancer cells. Toxicol Res. 2016;5:331–9.

    Article  CAS  Google Scholar 

  47. Jiang Y-S, Lei J-A, Feng F, Liang Q-M, Wang F-R. Probucol suppresses human glioma cell proliferation in vitro via ROS production and LKB1-AMPK activation. Acta Pharmacologica Sin. 2014;35:1556–65.

    Article  Google Scholar 

  48. Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis 2009;207:16–23.

    Article  CAS  PubMed  Google Scholar 

  49. Li F, Zhao C, Wang L. Molecular-targeted agents combination therapy for cancer: developments and potentials. Int J cancer. 2014;134:1257–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81572972), the Supporting Plan of Scientific and Technological Innovation Team in Universities of Henan Province (20IRTSTHN029), the Scientific and Technological Research Project of Henan Province (212102310250).

Author information

Authors and Affiliations

Authors

Contributions

WC, QSZ and JL contributed to the design of the experiments. WC, QSZ, XSD, YHC, KZ and XXD performed the experiments and analyzed the data. XHC, CJZ and RHB helped to perform the experiments and contributed to the software analysis. YQ, JMZ, FT, KDL and ZMD helped to perform material preparation and data analysis. WC and QSZ wrote the manuscript. JL revised the manuscript and supervised the study.

Corresponding author

Correspondence to Jing Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhang, Q., Dai, X. et al. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 42, 2456–2470 (2023). https://doi.org/10.1038/s41388-023-02762-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02762-y

This article is cited by

Search

Quick links