Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diosmetin suppresses the progression of ESCC by CDK2/Rb/E2F2/RRM2 pathway and synergies with cisplatin

Abstract

Cisplatin (CDDP) is the first-line drug in the clinical treatment of esophageal squamous cell carcinoma (ESCC), which has severe nephrotoxicity. Diosmetin (DIOS) can protect kidney from oxidative damage, however, its function in ESCC is unknown. This study aims to explore the effect and mechanism of DIOS on ESCC and its combined effect with CDDP. Herein, we found that DIOS significantly inhibited the progression of ESCC in vitro and in vivo. Furthermore, the anti-tumor effect of DIOS was not statistically different from that of CDDP. Mechanically, transcriptomics revealed that DIOS inhibited the E2F2/RRM2 signaling pathway. The transcriptional regulation of RRM2 by E2F2 was verified by luciferase assay. Moreover, docking model, CETSA, pull-down assay and CDK2 inhibitor assay confirmed that DIOS directly targeted CDK2, leading to significant suppression of ESCC. Additionally, the patient-derived xenografts (PDX) model showed that the combination of DIOS and CDDP significantly inhibited the growth of ESCC. Importantly, the combined treatment with DIOS and CDDP significantly reduced the mRNA expression levels of kidney injury biomarkers KIM-1 and NGAL in renal tissue, as well as the levels of blood urea nitrogen, serum creatinine and blood uric acid compared to the single treatment with CDDP. In conclusion, DIOS could be an effective drug and a potential chemotherapeutic adjuvant for ESCC treatment. Furthermore, DIOS could reduce the nephrotoxicity of CDDP to some extent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DIOS inhibited the progression of ESCC.
Fig. 2: DIOS inhibited the CDK2/Rb/E2F2/RRM2 signaling pathway in ESCC cells.
Fig. 3: DIOS inhibited the proliferation and migration, and induced cell cycle arrest of ESCC by targeting CDK2.
Fig. 4: DIOS suppressed the growth of ESCC in vivo.
Fig. 5: The combination of DIOS and CDDP enhanced the anti-tumor effect in ESCC cells.
Fig. 6: The combination of DIOS and CDDP enhanced the anti-tumor effect in ESCC PDX model.
Fig. 7: Evaluation of drug toxicity and side effects of DIOS, CDDP alone and in combination in PDX model and HEK-293T cells.
Fig. 8: The combination of DIOS and CDDP reduced nephrotoxicity of CDDP.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  3. He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B. 2021;11:3379–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perego R, Beccaglia P, Angelini M, Villa P, Cova D. Pharmacokinetic studies of diosmin and diosmetin in perfused rat liver. Xenobiotica 1993;23:1345–52.

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Zhang S, Yang F, Xie J, Chen J, Li Z. Diosmetin alleviates acute kidney injury by promoting the TUG1/Nrf2/HO-1 pathway in sepsis rats. Int Immunopharmacol. 2020;88:106965.

    Article  CAS  PubMed  Google Scholar 

  6. Ma A, Zhang R. Diosmetin inhibits cell proliferation, induces cell apoptosis and cell cycle arrest in liver cancer. Cancer Manag Res. 2020;12:3537–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J, Wen X, Liu B, Zhang Q, Zhang J, Miao H, et al. Diosmetin inhibits the metastasis of hepatocellular carcinoma cells by downregulating the expression levels of MMP-2 and MMP-9. Mol Med Rep. 2016;13:2401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yan Y, Liu X, Gao J, Wu Y, Li Y. Inhibition of TGF-beta Signaling in Gliomas by the Flavonoid Diosmetin Isolated from Dracocephalum peregrinum L. Molecules. 2020;25:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol. 2018;8:180112.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Horiuchi D, Huskey NE, Kusdra L, Wohlbold L, Merrick KA, Zhang C, et al. Chemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways. Proc Natl Acad Sci USA. 2012;109:E1019–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding retinoblastoma post-translational regulation for the design of targeted cancer therapies. Cancers (Basel). 2022;14:1265.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang HF, Alshareef A, Wu C, Jiao JW, Sorensen PH, Lai R, et al. miR-200b induces cell cycle arrest and represses cell growth in esophageal squamous cell carcinoma. Carcinogenesis 2016;37:858–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int J Mol Sci. 2022;23:1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng Y, Li Y, Liu X, Sun H, Liang G, Hu J, et al. Multicentre comparison of the toxicity and effectiveness of lobaplatin-based versus cisplatin-based adjuvant chemotherapy in oesophageal carcinoma. Front Oncol. 2021;11:668140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perazella MA. Onco-nephrology: Renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012;7:1713–21.

    Article  CAS  PubMed  Google Scholar 

  16. Eslamifar Z, Moridnia A, Sabbagh S, Ghaffaripour R, Jafaripour L, Behzadifard M. Ameliorative effects of gallic acid on cisplatin-induced nephrotoxicity in rat variations of biochemistry, histopathology, and gene expression. Biomed Res Int. 2021;2021:2195238.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tan RZ, Wang C, Deng C, Zhong X, Yan Y, Luo Y, et al. Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-kappaB signaling maintained macrophage inflammation. Phytother Res. 2020;34:139–52.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Chen Z. Diosmetin improvement cisplatin-induced damage to rat renal tubular epithelial cells. J Heilongjiang Bayi Agric Univ. 2021;33:93–99. (In Chinese)

    Google Scholar 

  19. Rosner HI, Sorensen CS. E2F transcription regulation: An orphan cyclin enters the stage. EMBO J 2019;38:e103421.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tang Q, Wu L, Xu M, Yan D, Shao J, Yan S. Osalmid, a Novel Identified RRM2 inhibitor, enhances radiosensitivity of esophageal cancer. Int J Radiat Oncol Biol Phys. 2020;108:1368–79.

    Article  PubMed  Google Scholar 

  21. Sears S, Siskind L. Potential therapeutic targets for Cisplatin-induced kidney injury: Lessons from other models of AKI and fibrosis. J Am Soc Nephrol. 2021;32:1559–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamano H, Ikeda Y, Goda M, Fukushima K, Kishi S, Chuma M, et al. Diphenhydramine may be a preventive medicine against cisplatin-induced kidney toxicity. Kidney Int. 2021;99:885–99.

    Article  CAS  PubMed  Google Scholar 

  23. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237–44.

    Article  CAS  PubMed  Google Scholar 

  24. Soni SS, Cruz D, Bobek I, Chionh CY, Nalesso F, Lentini P, et al. NGAL: A biomarker of acute kidney injury and other systemic conditions. Int Urol Nephrol. 2010;42:141–50.

    Article  CAS  PubMed  Google Scholar 

  25. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007;13:3989–98.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Xu Y, Bai X, Guo L, Li X, Gao J, et al. Prediction of the mechanisms of action of Zhibai Dihaung Granule in cisplatin-induced acute kidney injury: A network pharmacology study and experimental validation. J Ethnopharmacol. 2022;292:115241.

    Article  CAS  PubMed  Google Scholar 

  27. Yang D, Jiang Y, Wang Y, Lei Q, Zhao X, Yi R, et al. Improvement of Flavonoids in lemon seeds on oxidative damage of human embryonic kidney 293T cells induced by H(2)O(2). Oxid Med Cell Longev. 2020;2020:3483519.

    PubMed  PubMed Central  Google Scholar 

  28. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26:25.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hazafa A, Rehman KU, Jahan N, Jabeen Z. The Role of Polyphenol (Flavonoids) compounds in the treatment of cancer cells. Nutr Cancer. 2020;72:386–97.

    Article  CAS  PubMed  Google Scholar 

  30. Hong P, Liu QW, Xie Y, Zhang QH, Liao L, He QY, et al. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis. 2020;11:524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qiao Z, Cheng Y, Liu S, Ma Z, Li S, Zhang W. Casticin inhibits esophageal cancer cell proliferation and promotes apoptosis by regulating mitochondrial apoptotic and JNK signaling pathways. Naunyn Schmiedebergs Arch Pharm. 2019;392:177–87.

    Article  CAS  Google Scholar 

  32. Choi J, Lee DH, Park SY, Seol JW. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed Pharmacother. 2019;117:109091.

    Article  CAS  PubMed  Google Scholar 

  33. Roma A, Rota SG, Spagnuolo PA. Diosmetin induces apoptosis of acute myeloid leukemia cells. Mol Pharm. 2018;15:1353–60.

    Article  CAS  PubMed  Google Scholar 

  34. Qiu M, Liu J, Su Y, Guo R, Zhao B, Liu J. Diosmetin induces apoptosis by downregulating AKT phosphorylation via P53 activation in human renal carcinoma ACHN cells. Protein Pept Lett. 2020;27:1022–8.

    Article  CAS  PubMed  Google Scholar 

  35. Pakradooni R, Shukla N, Gupta K, Kumar J, Isali I, Khalifa AO, et al. Diosmetin Induces Modulation of Igf-1 and Il-6 Levels to Alter Rictor-Akt-PKCalpha Cascade in Inhibition of Prostate Cancer. J Clin Med. 2021;10:4741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ning R, Chen G, Fang R, Zhang Y, Zhao W, Qian F. Diosmetin inhibits cell proliferation and promotes apoptosis through STAT3/c-Myc signaling pathway in human osteosarcoma cells. Biol Res. 2021;54:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Y, Shao Z, Liao Y, Xia X, Huang C, He J, et al. Targeting SKP2/Bcr-Abl pathway with Diosmetin suppresses chronic myeloid leukemia proliferation. Eur J Pharm. 2020;883:173366.

    Article  CAS  Google Scholar 

  38. Liu B, Zhang M, Liu S, Ying J, Zhang J, Kurihara H, et al. Diosmetin, a Potential p53 Activator, Performs Anticancer Effect by Regulating Cell Cycling and Cell Proliferation in HepG2 Cells. Protein Pept Lett. 2017;24:413–8.

    Article  CAS  PubMed  Google Scholar 

  39. Mazzu YZ, Armenia J, Chakraborty G, Yoshikawa Y, Coggins SA, Nandakumar S, et al. A Novel Mechanism Driving Poor-Prognosis Prostate Cancer: Overexpression of the DNA Repair Gene, Ribonucleotide Reductase Small Subunit M2 (RRM2). Clin Cancer Res. 2019;25:4480–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong C, Liu H, Song R, Zhong T, Lou M, Wang T, et al. ATR-CHK1-E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG. Biochim Biophys Acta. 2016;1859:612–26.

    Article  CAS  PubMed  Google Scholar 

  41. Zardavas D, Ponde N, Tryfonidis K. CDK4/6 blockade in breast cancer: Current experience and future perspectives. Expert Opin Investig Drugs. 2017;26:1357–72.

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Li Z, Huo S, Wei Q, Ge L. Induction of G0/G1 phase arrest and apoptosis by CRISPR/Cas9-mediated knockout of CDK2 in A375 melanocytes. Mol Clin Oncol. 2020;12:9–14.

    CAS  PubMed  Google Scholar 

  43. Yang AL, Wu Q, Hu ZD, Wang SP, Tao YF, Wang AM, et al. A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling. Toxicol Appl Pharm. 2021;431:115739.

    Article  CAS  Google Scholar 

  44. Lin T, Li J, Liu L, Li Y, Jiang H, Chen K, et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem. 2021;215:113281.

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Jiang X, Yu Y, Huang W, Xing H, Agar NY, et al. KAP regulates ROCK2 and Cdk2 in an RNA-activated glioblastoma invasion pathway. Oncogene 2015;34:1432–41.

    Article  CAS  PubMed  Google Scholar 

  46. Wong IYH, Lam KO, Zhang RQ, Chan WWL, Wong CLY, Chan FSY, et al. Neoadjuvant Chemoradiotherapy Using Cisplatin and 5-Fluorouracil (PF) Versus Carboplatin and Paclitaxel (CROSS Regimen) for Esophageal Squamous Cell Carcinoma (ESCC): A Propensity Score-matched Study. Ann Surg. 2020;272:779–85.

    Article  PubMed  Google Scholar 

  47. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31:15–25.

    Article  CAS  PubMed  Google Scholar 

  48. Mehra N, Christopher V, Dhanushkodi M, Radhakrishnan V, Ganesan TS, Ganesharajah S, et al. A modified olanzapine-based anti-emetic regimen for the control of nausea and vomiting in patients receiving weekly cisplatin. Int J Clin Pharm. 2020;42:662–6.

    Article  CAS  PubMed  Google Scholar 

  49. Shiomi Y, Ohira Y, Yoshimura M, Ozaki T, Takei M, Tanaka T. Z-505 hydrochloride ameliorates chemotherapy-induced anorexia in rodents via activation of the ghrelin receptor, GHSR1a. Eur J Pharm. 2018;818:148–57.

    Article  CAS  Google Scholar 

  50. Song MY, Ku SK, Kim HJ, Han JS. Low molecular weight fucoidan ameliorating the chronic cisplatin-induced delayed gastrointestinal motility in rats. Food Chem Toxicol. 2012;50:4468–78.

    Article  CAS  PubMed  Google Scholar 

  51. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of Cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–518.

    Article  CAS  PubMed  Google Scholar 

  52. Fang CY, Lou DY, Zhou LQ, Wang JC, Yang B, He QJ, et al. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharm Sin. 2021;42:1951–69.

    Article  CAS  Google Scholar 

  53. Ma X, Yan L, Zhu Q, Shao F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-kappaB signaling pathway. PLoS One. 2017;12:e0171612.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim JS, Kim KS, Son JY, Kim HR, Park JH, Lee SH, et al. Protective Effects of Dendropanax morbifera against Cisplatin-Induced Nephrotoxicity without Altering Chemotherapeutic Efficacy. Antioxid (Basel). 2019;8:256.

    Article  CAS  Google Scholar 

  55. Song X, Long D. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases. Front Neurosci. 2020;14:267.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, et al. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharm Res. 2021;167:105575.

    Article  CAS  Google Scholar 

  57. Yu C, Dong H, Wang Q, Bai J, Li YN, Zhao JJ, et al. Danshensu attenuates cisplatin-induced nephrotoxicity through activation of Nrf2 pathway and inhibition of NF-kappaB. Biomed Pharmacother. 2021;142:111995.

    Article  CAS  PubMed  Google Scholar 

  58. Wen SW, Everitt SJ, Bedo J, Chabrot M, Ball DL, Solomon B, et al. Spleen volume variation in patients with locally advanced non-small cell lung cancer receiving Platinum-based chemo-radiotherapy. PLoS One. 2015;10:e0142608.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang GL, Jiang L, Yan Q, Liu RH, Zhang L. Anti-tumor effect of matrine combined with cisplatin on rat models of cervical cancer. Asian Pac J Trop Med. 2015;8:1055–9.

    Article  CAS  PubMed  Google Scholar 

  60. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013;341:84–87.

    Article  PubMed  Google Scholar 

  62. Chen X, Wu Q, Chen Y, Zhang J, Li H, Yang Z, et al. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition. Br J Pharm. 2019;176:2079–94.

    Article  CAS  Google Scholar 

  63. Wu M, Wang Y, Yang D, Gong Y, Rao F, Liu R, et al. A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine 2019;41:244–55.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81572972), the Supporting Plan of Scientific and Technological Innovation Team in Universities of Henan Province (20IRTSTHN029), the Scientific and Technological Research Project of Henan Province (212102310250).

Author information

Authors and Affiliations

Authors

Contributions

YHC and JL contributed to the design of the experiments. YHC, XSD, and WC performed the experiments and analyzed the data. YQ, RHB, XXD, and KZ helped to perform the experiments and contributed to the software analysis. XHC, XL, SJM, WBC, XL, KDL, and ZMD performed material preparation and data analysis. YHC and XSD wrote the manuscript. JL revised the manuscript and supervised the study.

Corresponding author

Correspondence to Jing Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Dai, X., Chen, W. et al. Diosmetin suppresses the progression of ESCC by CDK2/Rb/E2F2/RRM2 pathway and synergies with cisplatin. Oncogene 42, 2278–2293 (2023). https://doi.org/10.1038/s41388-023-02750-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02750-2

Search

Quick links