Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deciphering glioma epitranscriptome: focus on RNA modifications

Abstract

Gliomas are highly malignant tumors accounting for the majority of brain neoplasms. They are characterized by nuclear atypia, high mitotic rate and cellular polymorphism that often contributes to aggressiveness and resistance to standard therapy. They often associate with challenging treatment approaches and poor outcomes. New treatment strategies or regimens to improve the efficacy of glioma treatment require a deeper understanding of glioma occurrence and development as well as elucidation of their molecular biological characteristics. Recent studies have revealed RNA modifications as a key regulatory mechanism involved in tumorigenesis, tumor progression, immune regulation, and response to therapy. The present review discusses research advances on several RNA modifications involved in glioma progression and tumor microenvironment (TME) immunoregulation as well as in the development of adaptive drug resistance, summarizing current progress on major RNA modification targeting strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main RNA modification regulators involved in glioma development and progression indicating target genes or pathways.
Fig. 2: Main RNA modification regulators involved in glioma TME regulation.
Fig. 3: Main RNA modification regulators involved in glioma resistance to therapy.

Similar content being viewed by others

References

  1. Wood MD, Halfpenny AM, Moore SR. Applications of molecular neuro-oncology - a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagn Pathol. 2019;14:29.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 2021;23:1231–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci. 2021;22:540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar S, Mohapatra T. Deciphering Epitranscriptome: Modification of mRNA Bases Provides a New Perspective for Post-transcriptional Regulation of Gene Expression. Front Cell Dev Biol. 2021;9:628415.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boccaletto P, MacHnicka MA, Purta E, Pitkowski P, Baginski B, Wirecki TK, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucl Acids Res. 2018;46:D303–7.

    Article  CAS  PubMed  Google Scholar 

  6. Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med. 2020;52:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  8. Jackman JE, Alfonzo JD. Transfer RNA modifications: nature’s combinatorial chemistry playground. Wiley Interdiscip Rev RNA. 2013;4:35–48.

    Article  CAS  PubMed  Google Scholar 

  9. Yan Y, Wei W, Long S, Ye S, Yang B, Jiang J, et al. The role of RNA modification in the generation of acquired drug resistance in glioma. Front Genet. 2022;13:1032286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front Genet. 2018;9:640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou S, Toh JDW, Wong KHQ, Gao YG, Hong W, Woon ECY. N(6)-Methyladenosine: a conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci Rep. 2016;6:25677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol Cancer. 2020;19:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tűzesi Á, Hallal S, Satgunaseelan L, Buckland ME, Alexander KL. Understanding the Epitranscriptome for Avant-Garde Brain Tumour Diagnostics. Cancers (Basel). 2023;15:1232.

    Article  PubMed  Google Scholar 

  14. Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. 2015;162:1299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luo S, Tong L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci USA 2014;111:13834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  17. Stoltzfus CM, Dane RW. Accumulation of Spliced Avian Retrovirus mRNA Is Inhibited in S-Adenosylmethionine-Depleted Chicken Embryo Fibroblasts. J Virol. 1982;42:918–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Finkel D, Groner Y. Methylations of adenosine residues (m6A) in pre-mRNA are important for formation of late simian virus 40 mRNAs. Virology. 1983;131:409–25.

    Article  CAS  PubMed  Google Scholar 

  19. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G, Vanacova S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucl Acids Res. 2017;45:11356–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol Cell. 2013;49:18–29.

    Article  CAS  PubMed  Google Scholar 

  22. Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806.

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin S, Choe J, Du P, Triboulet R, Gregory RI. METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551:251–5.

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Xiong X, Wang K, Wang L, Shu X, Ma S, et al. Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol. 2016;12:311–6.

    Article  CAS  PubMed  Google Scholar 

  28. Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, et al. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell. 2016;167:816–828.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai X, Wang T, Gonzalez G, Wang Y. Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA. Anal Chem. 2018;90:6380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016;530:441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  32. Doerfler W. DNA methylation-a regulatory signal in eukaryotic gene expression. J Gen Virol. 1981;57:1–20.

    Article  CAS  PubMed  Google Scholar 

  33. Adams RLP, Burdon RH, Herbert Taylor J. DNA methylation in eukaryotes. CRC Crit Rev Biochem. 1982;13:349–84.

    Article  CAS  PubMed  Google Scholar 

  34. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucl Acids Res. 2012;40:5023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucl Acids Res. 1999;27:3138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395–8.

    Article  CAS  PubMed  Google Scholar 

  37. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24:1590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 2017;27:606–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 2017;118:2587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucl Acids Res. 2016;44:852–62.

    Article  CAS  PubMed  Google Scholar 

  42. Huber SM, Van Delft P, Mendil L, Bachman M, Smollett K, Werner F, et al. Formation and Abundance of 5-Hydroxymethylcytosine in RNA. Chem Biochem. 2015;16:752–5.

    CAS  Google Scholar 

  43. Zhang HY, Xiong J, Qi BL, Feng YQ, Yuan BF. The existence of 5-hydroxymethylcytosine and 5-formylcytosine in both DNA and RNA in mammals. Chem Commun (Camb). 2016;52:737–40.

    Article  CAS  PubMed  Google Scholar 

  44. Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, et al. Tet-Mediated Formation of 5-Hydroxymethylcytosine in RNA. J Am Chem Soc. 2014;136:11582–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Delatte B, Wang F, Ngoc LV, Collignon E, Bonvin E, Deplus R, et al. RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351:282–5.

    Article  CAS  PubMed  Google Scholar 

  46. Horowitz S, Horowitz A, Nilsen TW, Munnsf TW, Rottman FM. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc Natl Acad Sci USA 1984;81:5667–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen C, Zhao X, Kierzek R, Yu YT. A Flexible RNA Backbone within the Polypyrimidine Tract Is Required for U2AF65 Binding and Pre-mRNA Splicing In Vivo. Mol Cell Biol. 2010;30:4108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability. Mol Ther. 2008;16:1833–40.

    Article  PubMed  Google Scholar 

  49. Karijolich J, Yu YT. Modifying the genetic code: Converting nonsense codons into sense codons by targeted pseudouridylation. Nature. 2011;474:395–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernández IS, Ng CL, Kelley AC, Wu G, Yu YT, Ramakrishnan V. Unusual base pairing during the decoding of a stop codon by the ribosome. Nature. 2013;500:107–10.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17:83–96.

    Article  CAS  PubMed  Google Scholar 

  52. Bass BL. RNA Editing by Adenosine Deaminases That Act on RNA. Annu Rev Biochem. 2002;71:817–46.

    Article  CAS  PubMed  Google Scholar 

  53. Tajaddod M, Jantsch MF, Licht K. The dynamic epitranscriptome: A to I editing modulates genetic information. Chromosoma 2016;125:51–63.

    Article  CAS  PubMed  Google Scholar 

  54. Nigita G, Veneziano D, Ferro A. A-to-I RNA Editing: Current Knowledge Sources and Computational Approaches with Special Emphasis on Non-Coding RNA Molecules. Front Bioeng Biotechnol. 2015;3:37.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Galardi S, Michienzi A, Ciafrè SA. Insights into the Regulatory Role of m6A Epitranscriptome in Glioblastoma. Int J Mol Sci. 2020;21:2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Du J, Hou K, Mi S, Ji H, Ma S, Ba Y, et al. Malignant Evaluation and Clinical Prognostic Values of m6A RNA Methylation Regulators in Glioblastoma. Front Oncol. 2020;10:208.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang L, Cao H, Zhong Y, Ji P, Chen F. The Role of m6A Regulator-Mediated Methylation Modification and Tumor Microenvironment Infiltration in Glioblastoma Multiforme. Front Cell Dev Biol. 2022;10:842835.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen F, Xie X, Chao M, Cao H, Wang L. The Potential Value of m6A RNA Methylation in the Development of Cancers Focus on Malignant Glioma. Front Immunol. 2022;13:917153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fang R, Chen X, Zhang S, Shi H, Ye Y, Shi H, et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun. 2021;12:177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dixit D, Prager BC, Gimple RC, Poh HX, Wang Y, Wu Q, et al. The rna m6a reader ythdf2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 2021;11:480–99.

    Article  CAS  PubMed  Google Scholar 

  61. Yin D, Kong C, Chen M. Effect of hnRNPA2/B1 on the proliferation and apoptosis of glioma U251 cells via the regulation of AKT and STAT3 pathways. Biosci Rep. 2020;40:BSR20190318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li F, Yi Y, Miao Y, Long W, Long T, Chen S, et al. N6-Methyladenosine Modulates Nonsense-Mediated mRNA Decay in Human Glioblastoma. Cancer Res. 2019;79:5785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 2020;722:144076.

    Article  CAS  PubMed  Google Scholar 

  64. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal and leukemia cells. Nat Med. 2017;23:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cong P, Wu T, Huang X, Liang H, Gao X, Tian L, et al. Identification of the Role and Clinical Prognostic Value of Target Genes of m6A RNA Methylation Regulators in Glioma. Front Cell Dev Biol. 2021;9:709022.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhao R, Li B, Zhang S, He Z, Pan Z, Guo Q, et al. The N6-Methyladenosine-Modified Pseudogene HSPA7 Correlates With the Tumor Microenvironment and Predicts the Response to Immune Checkpoint Therapy in Glioblastoma. Front Immunol. 2021;12:653711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. Int J Mol Sci. 2022;23:9272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yuan M, Da Silva ACAL, Arnold A, Okeke L, Ames H, Correa-Cerro LS, et al. MicroRNA (miR) 125b regulates cell growth and invasion in pediatric low grade glioma. Sci Rep. 2018;8:12506.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Liu Z, Chen Y, Wang L, Ji S. ALKBH5 Promotes the Proliferation of Glioma Cells via Enhancing the mRNA Stability of G6PD. Neurochem Res. 2021;46:3003–11.

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Sha Y, Sun T. m6A Modifications Play Crucial Roles in Glial Cell Development and Brain Tumorigenesis. Front Oncol. 2021;11:611660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell. 2018;172:90–105.e23.

    Article  CAS  PubMed  Google Scholar 

  72. Zhang S, Zhao S, Qi Y, Li B, Wang H, Pan Z, et al. SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner. Mol Ther Nucl Acids. 2022;27:699–717.

    Article  CAS  Google Scholar 

  73. Zhu X, Yang H, Zhang M, Wu X, Jiang L, Liu X, et al. YTHDC1-mediated VPS25 regulates cell cycle by targeting JAK-STAT signaling in human glioma cells. Cancer Cell Int. 2021;21:645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Macari F, El-Houfi Y, Boldina G, Xu H, Khoury-Hanna S, Ollier J, et al. TRM6/61 connects PKCα with translational control through tRNAi(Met) stabilization: impact on tumorigenesis. Oncogene. 2016;35:1785–96.

    Article  CAS  PubMed  Google Scholar 

  75. Wang B, Niu L, Wang Z, Zhao Z. RNA m1A Methyltransferase TRMT6 Predicts Poorer Prognosis and Promotes Malignant Behavior in Glioma. Front Mol Biosci. 2021;8:692130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mongiardi MP, Savino M, Falchetti ML, Illi B, Bozzo F, Valle C, et al. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme. Oncotarget. 2016;7:33257–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xie Q, Wu TP, Gimple RC, Li Z, Prager BC, Wu Q, et al. N6-methyladenine DNA Modification in Glioblastoma. Cell. 2018;175:1228–43.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Wang N, Wu J, Gao X, Zhao H, Liu Z, et al. 5-Methylcytosine Related LncRNAs Reveal Immune Characteristics, Predict Prognosis and Oncology Treatment Outcome in Lower-Grade Gliomas. Front Immunol. 2022;13:844778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang P, Wu M, Tu Z, Tao C, Hu Q, Li K, et al. Identification of RNA: 5-Methylcytosine Methyltransferases-Related Signature for Predicting Prognosis in Glioma. Front Oncol. 2020;10:1119.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li Y, Li X. Comment on ‘Physical performance is associated with visual acuity in university students: results of a school-based study’. Rev Assoc Med Bras. 2021;67:1383.

    Article  PubMed  Google Scholar 

  81. Xu X, Zhang Y, Zhang J, Zhang X. NSun2 promotes cell migration through methylating autotaxin mRNA. J Biol Chem. 2020;295:18134–47.

    Article  CAS  PubMed  Google Scholar 

  82. Takai H, Masuda K, Sato T, Sakaguchi Y, Suzuki T, Suzuki T, et al. 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. Cell Rep. 2014;9:48–60.

    Article  CAS  PubMed  Google Scholar 

  83. García MG, Carella A, Urdinguio RG, Bayón GF, Lopez V, Tejedor JR, et al. Epigenetic dysregulation of TET2 in human glioblastoma. Oncotarget. 2018;9:25922–34.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Carella A, Tejedor JR, García MG, Urdinguio RG, Bayón GF, Sierra M, et al. Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer. 2020;146:373–87.

    Article  CAS  PubMed  Google Scholar 

  85. Li L, Yang Y, Wang Z, Xu C, Huang J, Li G. Prognostic role of METTL1 in glioma. Cancer Cell Int. 2021;21:633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhu J, Liu X, Chen W, Liao Y, Liu J, Yuan L, et al. Association of RNA m7G Modification Gene Polymorphisms with Pediatric Glioma Risk. Biomed Res Int. 2023;2023:3678327.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J Biol Chem. 2017;292:4326–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Paz N, Levanon EY, Amariglio N, Heimberger AB, Ram Z, Constantini S, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17:1586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Galeano F, Rossetti C, Tomaselli S, Cifaldi L, Lezzerini M, Pezzullo M, et al. ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene. 2013;32:998–1009.

    Article  CAS  PubMed  Google Scholar 

  90. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, et al. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest. 2012;122:4059–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deng YW, Shu YG, Sun SL. miR-376a inhibits glioma proliferation and angiogenesis by regulating YAP1/VEGF signalling via targeting of SIRT1. Transl Oncol. 2022;15:101270.

    Article  CAS  PubMed  Google Scholar 

  92. De Paolis V, Lorefice E, Orecchini E, Carissimi C, Laudadio I, Fulci V. Epitranscriptomics: A New Layer of microRNA Regulation in Cancer. Cancers. 2021;13:3372.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hu G, Wang R, Wei B, Wang L, Yang Q, Kong D, et al. Prognostic Markers Identification in Glioma by Gene Expression Profile Analysis. J Comput Biol. 2020;27:81–90.

    Article  CAS  PubMed  Google Scholar 

  94. Wang LJ, Lv P, Lou Y, Ye J. Gene Expression-Based Predication of RNA Pseudouridine Modification in Tumor Microenvironment and Prognosis of Glioma Patients. Front Cell Dev Biol. 2022;9:727595.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Miao FA, Chu K, Chen HR, Zhang M, Shi PC, Bai J, et al. Increased DKC1 expression in glioma and its significance in tumor cell proliferation, migration and invasion. Invest N. Drugs. 2019;37:1177–86.

    Article  CAS  Google Scholar 

  96. Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu AB, et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature. 2014;510:412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dong Z, Cui H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel). 2020;12:736.

    Article  CAS  PubMed  Google Scholar 

  98. Jin DI, Lee SW, Han ME, Kim HJ, Seo SA, Hur GY, et al. Expression and roles of Wilms’ tumor 1-associating protein in glioblastoma. Cancer Sci. 2012;103:2102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xi Z, Xue Y, Zheng J, Liu X, Ma J, Liu Y. WTAP Expression Predicts Poor Prognosis in Malignant Glioma Patients. J Mol Neurosci. 2016;60:131–6.

    Article  CAS  PubMed  Google Scholar 

  100. Pan T, Wu F, Li L, Wu S, Zhou F, Zhang P, et al. The role m6A RNA methylation is CNS development and glioma pathogenesis. Mol Brain. 2021;14:1–9.

    Article  Google Scholar 

  101. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell. 2017;31:591–606.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jin Y, Wang Z, He D, Zhu Y, Hu X, Gong L, et al. Analysis of m6A-Related Signatures in the Tumor Immune Microenvironment and Identification of Clinical Prognostic Regulators in Adrenocortical Carcinoma. Front Immunol. 2021;12:637933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xiong W, Li C, Wan B, Zheng Z, Zhang Y, Wang S, et al. N6-Methyladenosine Regulator-Mediated Immune Patterns and Tumor Microenvironment Infiltration Characterization in Glioblastoma. Front Immunol. 2022;13:819080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pan Z, Zhao R, Li B, Qi Y, Qiu W, Guo Q, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Mol Cancer. 2022;21:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Qi B, Yang C, Zhu Z, Chen H. EZH2-Inhibited MicroRNA-454-3p Promotes M2 Macrophage Polarization in Glioma. Front Cell Dev Biol. 2020;8:574940.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L. et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nature. Nat. Commun. 2019;10:1898.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yin H, Zhang X, Yang P, Zhang X, Peng Y, Li D, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021;12:1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhong C, Tao B, Yang F, Xia K, Yang X, Chen L, et al. Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. Clin Transl Med. 2021;11:e424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li J, et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8+ T cell dysfunction and tumor growth. Cancer Cell. 2021;39:945–957.e10.

    Article  CAS  PubMed  Google Scholar 

  110. Zhou J, Zhang X, Hu J, Qu R, Yu Z, Xu H, et al. M6A demethylase ALKBH5 controls CD4+T cell pathogenicity and promotes autoimmunity. Sci Adv. 2021;7:eabg0470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pan Y, Xiao K, Li Y, Li Y, Liu Q. RNA N6-Methyladenosine Regulator-Mediated Methylation Modifications Pattern and Immune Infiltration Features in Glioblastoma. Front Oncol. 2021;11:632934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, et al. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res. 2021;81:5876–88.

    Article  CAS  PubMed  Google Scholar 

  113. Cui Q, Yin K, Zhang X, Ye P, Chen X, Chao J, et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat Cancer. 2021;2:932–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu J, Gao Z, Liu K, Fan Y, Zhang Z, Xue H, et al. The Non-N6-Methyladenosine Epitranscriptome Patterns and Characteristics of Tumor Microenvironment Infiltration and Mesenchymal Transition in Glioblastoma. Front Immunol. 2022;12:809808.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348:74–80.

    Article  CAS  PubMed  Google Scholar 

  116. Wang Z, Zhang H, Xu S, Liu Z, Cheng Q. The adaptive transition of glioblastoma stem cells and its implications on treatments. Signal Transduct Target Ther. 2021;6:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shi J, Chen G, Dong X, Li H, Li S, Cheng S, et al. METTL3 Promotes the Resistance of Glioma to Temozolomide via Increasing MGMT and ANPG in a m6A Dependent Manner. Front Oncol. 2021;11:702983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yin J, Ge X, Shi Z, Yu C, Lu C, Wei Y, et al. Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p. Theranostics. 2021;11:1763–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yarmishyn AA, Yang YP, Lu KH, Chen YC, Chien Y, Chou SJ, et al. Musashi-1 promotes cancer stem cell properties of glioblastoma cells via upregulation of YTHDF1. Cancer Cell Int. 2020;20:597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li F, Chen S, Yu J, Gao Z, Sun Z, Yi Y, et al. Interplay of m6A and histone modifications contributes to temozolomide resistance in glioblastoma. Clin Transl Med. 2021;11:e553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xiao L, Li X, Mu Z, Zhou J, Zhou P, Xie C, et al. FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma. Cancer Res. 2020;80:3945–58.

    Article  CAS  PubMed  Google Scholar 

  122. Liu B, Zhou J, Wang C, Chi Y, Wei Q, Fu Z, et al. LncRNA SOX2OT promotes temozolomide resistance by elevating SOX2 expression via ALKBH5-mediated epigenetic regulation in glioblastoma. Cell Death Dis. 2020;11:384.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ding C, Yi X, Chen X, Wu Z, You H, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res. 2021;40:164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mao M, Chu Q, Lou Y, Lv P, Wang LJ. RNA N1-methyladenosine regulator-mediated methylation modification patterns and heterogeneous signatures in glioma. Front Immunol. 2022;13:948630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen Z, Zhang Z, Ding W, Zhang JH, Tan ZL, Mei YR, et al. Expression and Potential Biomarkers of Regulators for M7G RNA Modification in Gliomas. Front Neurol. 2022;13:886246.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias P, Soler M, et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 2019;138:1053–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shao D, Li Y, Wu J, Zhang B, Xie S, Zheng X, et al. An m6A/m5C/m1A/m7G-Related Long Non-coding RNA Signature to Predict Prognosis and Immune Features of Glioma. Front Genet. 2022;13:903117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou H, Meng M, Wang Z, Zhang H, Yang L, Li C, et al. The Role of m5C-Related lncRNAs in Predicting Overall Prognosis and Regulating the Lower Grade Glioma Microenvironment. Front Oncol. 2022;12:814742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rajesh Y, Biswas A, Kumar U, Banerjee I, Das S, Maji S, et al. Lumefantrine, an antimalarial drug, reverses radiation and temozolomide resistance in glioblastoma. Proc Natl Acad Sci USA 2020;117:12324–31.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nakano M, Fukami T, Gotoh S, Nakajima M. A-to-I RNA editing up-regulates human dihydrofolate reductase in breast cancer. J Biol Chem. 2017;292:4873–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hua H, Zeng J, Xing H, He Y, Han L, Zhang N, et al. The RNA editing enzyme ADAR modulated by the rs1127317 genetic variant diminishes EGFR-TKIs efficiency in advanced lung adenocarcinoma. Life Sci. 2022;296:120408.

    Article  CAS  PubMed  Google Scholar 

  132. Raghava Kurup R, Oakes EK, Vadlamani P, Nwosu O, Danthi P, Hundley HA. ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide. Sci Rep. 2022;12:13362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jiang L, Hao Y, Shao C, Wu Q, Prager BC, Gimple RC, et al. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest. 2022;132:e143397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Paul D, Sinha AN, Ray A, Lal M, Nayak S, Sharma A, et al. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep. 2017;7:2466.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Anthiya S, Griveau A, Loussouarn C, Baril P, Garnett M, Issartel JP, et al. MicroRNA-Based Drugs for Brain Tumors. Trends Cancer. 2018;4:222–38.

    Article  CAS  PubMed  Google Scholar 

  136. Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W, et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res. 2019;38:380.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer. 2021;1876:188616.

    Article  CAS  PubMed  Google Scholar 

  138. Nakano M, Nakajima M. Significance of A-to-I RNA editing of transcripts modulating pharmacokinetics and pharmacodynamics. Pharm Ther. 2018;181:13–21.

    Article  CAS  Google Scholar 

  139. Lin N, Chang KY, Li Z, Gates K, Rana ZA, Dang J, et al. An Evolutionarily Conserved Long Noncoding RNA TUNA Controls Pluripotency and Neural Lineage Commitment. Mol Cell. 2014;53:100519.

    Article  Google Scholar 

  140. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 2006;9:287–300.

    Article  CAS  PubMed  Google Scholar 

  141. Gravendeel LAM, Kouwenhoven MCM, Gevaert O, De Rooi JJ, Stubbs AP, Duijm JE, et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 2009;69:9065–72.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang Y, Cruickshanks N, Pahuski M, Yuan F, Dutta A, Schiff D, et al. Noncoding RNAs in Glioblastoma. Glioblastoma. Codon Publications; 2017 Chapter 6.

  143. Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113:1868–74.

    Article  CAS  PubMed  Google Scholar 

  144. Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, et al. LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol. 2012;40:2004–12.

    CAS  PubMed  Google Scholar 

  145. Reon BJ, Anaya J, Zhang Y, Mandell J, Purow B, Abounader R, et al. Expression of lncRNAs in Low-Grade Gliomas and Glioblastoma Multiforme: An In Silico Analysis. PLoS Med. 2016;13:e1002192.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, et al. CRNDE Promotes Malignant Progression of Glioma by Attenuating miR-384/PIWIL4/STAT3 Axis. Mol Ther. 2016;24:1199–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zheng J, Li XD, Wang P, Liu XB, Xue YX, Hu Y, et al. CRNDE affects the malignant biological characteristics of human glioma stem cells by negatively regulating miR-186. Oncotarget. 2015;6:25339–55.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B. CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett. 2015;367:122–8.

    Article  CAS  PubMed  Google Scholar 

  149. Zhen L, Yun-hui L, Hong-yu D, Jun M, Yi-long Y. Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol. 2016;37:673–83.

    Article  PubMed  Google Scholar 

  150. Gutschner T, Hämmerle M, Eißmann M, Hsu J, Kim Y, Hung G, et al. The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang K, Sun X, Zhou X, Han L, Chen L, Shi Z, et al. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget. 2015;6:537–46.

    Article  PubMed  Google Scholar 

  152. Ferrarese R, Harsh GR IV, Yadav AK, Bug E, Maticzka D, Reichardt W, et al. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression. J Clin Invest. 2014;124:2861–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. García-Claver A, Lorente M, Mur P, Campos-Martín Y, Mollejo M, Velasco G, et al. Gene expression changes associated with erlotinib response in glioma cell lines. Eur J Cancer. 2013;49:1641–53.

    Article  PubMed  Google Scholar 

  154. Sa L, Li Y, Zhao L, Liu Y, Wang P, Liu L, et al. The Role of HOTAIR/miR-148b-3p/USF1 on Regulating the Permeability of BTB. Front Mol Neurosci. 2017;10:194.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Cai H, Xue Y, Wang P, Wang Z, Li Z, Hu Y, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144. Oncotarget. 2015;6:19759–79.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Yu H, Xue Y, Wang P, Liu X, Ma J, Zheng J, et al. Knockdown of long non-coding RNA XIST increases blood–tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137. Oncogenesis. 2017;6:e303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer. 2018;17:61.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Li H, Yuan X, Yan D, Li D, Guan F, Dong Y, et al. Long Non-Coding RNA MALAT1 Decreases the Sensitivity of Resistant Glioblastoma Cell Lines to Temozolomide. Cell Physiol Biochem. 2017;42:1192–201.

    Article  CAS  PubMed  Google Scholar 

  160. Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo Y, et al. LncRNA CASC2 Interacts With miR-181a to Modulate Glioma Growth and Resistance to TMZ Through PTEN Pathway. J Cell Biochem. 2017;118:1889–99.

    Article  CAS  PubMed  Google Scholar 

  161. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bedi RK, Huang D, Eberle SA, Wiedmer L, Śledź P, Caflisch A. Small-Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. Chem. Med Chem. 2020;15:744–8.

    CAS  Google Scholar 

  163. Moroz-Omori EV, Huang D, Kumar Bedi R, Cheriyamkunnel SJ, Bochenkova E, Dolbois A, et al. METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. Chem. Med Chem. 2021;16:3035–43.

    CAS  Google Scholar 

  164. Selberg S, Blokhina D, Aatonen M, Koivisto P, Siltanen A, Mervaala E, et al. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep. 2019;26:3762–3771.e5.

    Article  CAS  PubMed  Google Scholar 

  165. Lan Q, Liu PY, Bell JL, Wang JY, Hüttelmaier S, Zhang XD, et al. The emerging roles of rna m6a methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res. 2021;81:3431–40.

    Article  CAS  PubMed  Google Scholar 

  166. Cully M. Chemical inhibitors make their RNA epigenetic mark. Nat Rev Drug Discov. 2019;18:892–4.

    Article  CAS  PubMed  Google Scholar 

  167. Huang Y, Yan J, Li Q, Li J, Gong S, Zhou H, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucl Acids Res. 2015;43:373–84.

    Article  CAS  PubMed  Google Scholar 

  168. Zhang DY, Ming GL, Song H. PUS7: a targetable epitranscriptomic regulator of glioblastoma growth. Trends Pharm Sci. 2021;42:976–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CP and AGP conceived and defined the scope of the review and agreed to be accountable for all aspects of the work. MM and CP conducted the primary literature search and analysis and drafted the manuscript. AGP refined the literature search and confirmed all cited articles, revised the manuscript, and agreed to be accountable for all aspects of the work. All authors, including MM, ANG, KAP, CP, and AGP, reviewed the results, provided critical feedback and comments, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Christina Piperi or Athanasios G. Papavassiliou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piperi, C., Markouli, M., Gargalionis, A.N. et al. Deciphering glioma epitranscriptome: focus on RNA modifications. Oncogene 42, 2197–2206 (2023). https://doi.org/10.1038/s41388-023-02746-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02746-y

This article is cited by

Search

Quick links