Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of SOX2 protein stability and tumorigenic activity by E3 ligase CHIP in esophageal cancer cells

Abstract

SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHIP negatively controls SOX2 protein level by promoting SOX2 proteasome degradation.
Fig. 2: HSP70 bridges the interaction between CHIP and SOX2 and is required for CHIP-mediated SOX2 ubiquitination and degradation.
Fig. 3: Both TPR and U-box domains are required for downregulation of SOX2 by CHIP.
Fig. 4: CHIP suppresses esophageal cancer cell proliferation and stem cell function.
Fig. 5: Inhibition of HSP90 activity induces SOX2 degradation.
Fig. 6: CHIP is predominantly localized in the cytoplasm in esophageal tumors.
Fig. 7: CHIP targets SOX2 ubiquitination and degradation in the nucleus.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron. 2003;39:749–65.

    Article  CAS  PubMed  Google Scholar 

  3. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12:15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  5. Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K, Lambooij JP, et al. SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer cell. 2016;30:519–32.

    Article  CAS  PubMed Central  Google Scholar 

  6. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Novak D, Huser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol. 2020;67:74–82.

    Article  CAS  PubMed  Google Scholar 

  8. Porter L, McCaughan F. SOX2 and squamous cancers. Semin Cancer Biol. 2020;67:154–67.

    Article  CAS  PubMed  Google Scholar 

  9. Schaefer T, Lengerke C. SOX2 protein biochemistry in stemness, reprogramming, and cancer: the PI3K/AKT/SOX2 axis and beyond. Oncogene. 2020;39:278–92.

    Article  CAS  PubMed  Google Scholar 

  10. Tam WL, Ng HH. Sox2: masterminding the root of cancer. Cancer cell. 2014;26:3–5.

    Article  CAS  PubMed  Google Scholar 

  11. Weina K, Utikal J. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med. 2014;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50.

    Article  CAS  PubMed  Google Scholar 

  13. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem cells. 2009;27:40–8.

    Article  CAS  PubMed  Google Scholar 

  14. Vanner RJ, Remke M, Gallo M, Selvadurai HJ, Coutinho F, Lee L, et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell. 2014;26:33–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim RZM, Mahendran HA, Malaysian Upper Gastrointestinal Surgical S. Esophageal squamous cell carcinoma and adenocarcinoma in Malaysia - Pooled data from upper gastrointestinal centers in a multiethnic Asian population. Cancer Epidemiol. 2022;80:102211.

    Article  PubMed  Google Scholar 

  16. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: new estimates from GLOBOCAN 2020. Gastroenterology. 2022;163:649–58.e642.

    Article  PubMed  Google Scholar 

  17. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  18. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41:1238–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas Research N, Analysis Working Group: Asan U, Agency BCC, Brigham, Women’s H, Broad I. et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–75.

    Article  Google Scholar 

  20. Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, et al. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 2020;30:902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maier S, Wilbertz T, Braun M, Scheble V, Reischl M, Mikut R, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol. 2011;42:1078–88.

    Article  CAS  PubMed  Google Scholar 

  22. Gen Y, Yasui K, Zen Y, Zen K, Dohi O, Endo M, et al. SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. Cancer Genet Cytogenet. 2010;202:82–93.

    Article  CAS  PubMed  Google Scholar 

  23. Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembele D, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PloS One. 2010;5:e8960.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PloS One. 2011;6:e26740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gen Y, Yasui K, Nishikawa T, Yoshikawa T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci. 2013;104:810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui CP, Zhang Y, Wang C, Yuan F, Li H, Yao Y, et al. Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nat Commun. 2018;9:4648.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fang L, Zhang L, Wei W, Jin X, Wang P, Tong Y, et al. A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell. 2014;55:537–51.

    Article  CAS  PubMed  Google Scholar 

  28. Riggi N, Suva ML, De Vito C, Provero P, Stehle JC, Baumer K, et al. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev. 2010;24:916–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Z, Kang L, Zhang H, Huang Y, Fang L, Li M, et al. AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene. 2019;38:5250–64.

    Article  CAS  PubMed  Google Scholar 

  30. Fang X, Huang Z, Zhai K, Huang Q, Tao W, Kim L, et al. Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Sci Transl Med. 2021;13:eabc7275.

  31. Edkins AL. CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem. 2015;78:219–42.

    Article  CAS  PubMed  Google Scholar 

  32. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharm Toxicol. 2015;55:353–71.

    Article  CAS  Google Scholar 

  33. Seo J, Han SY, Seong D, Han HJ, Song J. Multifaceted C-terminus of HSP70-interacting protein regulates tumorigenesis via protein quality control. Arch Pharm Res. 2019;42:63–75.

    Article  CAS  PubMed  Google Scholar 

  34. Cox JL, Wilder PJ, Gilmore JM, Wuebben EL, Washburn MP, Rizzino A. The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells. PloS One. 2013;8:e62857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stankiewicz M, Nikolay R, Rybin V, Mayer MP. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. FEBS J. 2010;277:3353–67.

    Article  CAS  PubMed  Google Scholar 

  36. Su CH, Wang CY, Lan KH, Li CP, Chao Y, Lin HC, et al. Akt phosphorylation at Thr308 and Ser473 is required for CHIP-mediated ubiquitination of the kinase. Cell Signal. 2011;23:1824–30.

    Article  CAS  PubMed  Google Scholar 

  37. Hatakeyama S, Watanabe M, Fujii Y, Nakayama KI. Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. Cancer Res. 2005;65:7874–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ding G, Chen P, Zhang H, Huang X, Zang Y, Li J, et al. Regulation of ubiquitin-like with plant homeodomain and RING Finger Domain 1 (UHRF1) protein stability by heat shock protein 90 chaperone machinery. J Biol Chem. 2016;291:20125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murphy ME. The HSP70 family and cancer. Carcinogenesis. 2013;34:1181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paul I, Ghosh MK. The E3 ligase CHIP: insights into its structure and regulation. Biomed Res Int. 2014;2014:918183.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA. 2002;99:12847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsumura Y, Sakai J, Skach WR. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem. 2013;288:31069–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Younger JM, Ren HY, Chen L, Fan CY, Fields A, Patterson C, et al. A foldable CFTRDeltaF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J Cell Biol. 2004;167:1075–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Banh A, Xiao N, Cao H, Chen CH, Kuo P, Krakow T, et al. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin Cancer Res. 2011;17:7265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Wang L, You QD, Xu XL. Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J Med Chem. 2020;63:1798–822.

    Article  CAS  PubMed  Google Scholar 

  47. Metz EP, Rizzino A. Sox2 dosage: a critical determinant in the functions of Sox2 in both normal and tumor cells. J Cell Physiol. 2019;234:19298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mamun MMA, Khan MR, Zhu Y, Zhang Y, Zhou S, Xu R, et al. Stub1 maintains proteostasis of master transcription factors in embryonic stem cells. Cell Rep. 2022;39:110919.

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, et al. Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ. 2016;23:393–404.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang C, Leng F, Saxena L, Hoang N, Yu J, Alejo S, et al. Proteolysis of methylated SOX2 protein is regulated by L3MBTL3 and CRL4(DCAF5) ubiquitin ligase. J Biol Chem. 2019;294:476–89.

    Article  CAS  PubMed  Google Scholar 

  51. Chen J, Ge X, Zhang W, Ding P, Du Y, Wang Q, et al. PI3K/AKT inhibition reverses R-CHOP resistance by destabilizing SOX2 in diffuse large B cell lymphoma. Theranostics. 2020;10:3151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: a double agent in cancer. Genes Dis. 2022;9:1521–55.

    Article  CAS  PubMed  Google Scholar 

  53. Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 2013;32:1284–95.

    Article  CAS  PubMed  Google Scholar 

  54. Yan S, Sun X, Xiang B, Cang H, Kang X, Chen Y, et al. Redox regulation of the stability of the SUMO protease SENP3 via interactions with CHIP and Hsp90. EMBO J. 2010;29:3773–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xie JJ, Xu LY, Wu ZY, Zhao Q, Xu XE, Wu JY, et al. Prognostic implication of ezrin expression in esophageal squamous cell carcinoma. J Surg Oncol. 2011;104:538–43.

    Article  CAS  PubMed  Google Scholar 

  56. Huang W, Hennrick K, Drew S. A colorful future of quantitative pathology: validation of Vectra technology using chromogenic multiplexed immunohistochemistry and prostate tissue microarrays. Hum Pathol. 2013;44:29–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the other members of the JW laboratory for their suggestions and technical assistance. This study is supported by grants from the National Natural Science Foundation of China (32130051 to JW and 82002995 to ZW) and Science and Technology Commission of Shanghai Municipality (20JC1411500). It was also supported by the ECNU Public Platform for Innovation (011) and the Instruments Sharing Platform of the School of Life Sciences, East China Normal University.

Author information

Authors and Affiliations

Authors

Contributions

LK, YW, and HZ were responsible for designing and conducting most of the experiments, extracting and analyzing data, and manuscript preparation. MC, JH, EL, and LX were responsible for tumor tissue microarray preparation, analysis, and data summary. PL, MX, and ZC conducted data validation. ZC and YH provided technical assistance. JL and RZ provided supervision and management. JW was responsible for supervision, funding, and manuscript preparation.

Corresponding authors

Correspondence to Rong Zhang or Jiemin Wong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Zhang, H., Wang, Y. et al. Control of SOX2 protein stability and tumorigenic activity by E3 ligase CHIP in esophageal cancer cells. Oncogene 42, 2315–2328 (2023). https://doi.org/10.1038/s41388-023-02745-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02745-z

Search

Quick links