Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification

Abstract

Peritoneal metastasis (PM) is an important metastatic modality of gastric cancer (GC).It is associated with poor prognosis. The underlying molecular mechanism of PM remains elusive. 5-Methylcytosine (m5C), a posttranscriptional RNA modification, involves in the progression of many tumors. However, its role in GC peritoneal metastasis remains unclear. In our study, transcriptome results suggested that NSUN2 expression was significantly upregulated in PM. And patients with high NSUN2 expression of PM predicted a worse prognosis. Mechanistically, NSUN2 regulates ORAI2 mRNA stability by m5C modification, thereby promoting ORAI2 expression and further promoting peritoneal metastasis and colonization of GC. YBX1 acts as a “reader” by binding to the ORAI2 m5C modification site. Following the uptake of fatty acids from omental adipocytes by GC cells, the transcription factor E2F1 was upregulated, which further promoted the expression of NSUN2 through cis-element. Briefly, these results revealed that peritoneal adipocytes provide fatty acid for GC cells, thus contributing to the elevation of E2F1 and NSUN2 through AMPK pathway, and upregulated NSUN2 activates the key gene ORAI2 through m5C modification, thereby promoting peritoneal metastasis and colonization of gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NSUN2 is highly expressed in gastric cancer with peritoneal metastasis and associated with GC peritoneal metastasis.
Fig. 2: NSUN2 prompted GC proliferation, migration, invasion and adhesion to peritoneum in vitro.
Fig. 3: Transcriptional factor E2F1 promotes the expression of NSUN2 in GC cells.
Fig. 4: Peritoneal high-fat environment activated transcriptional factor E2F1 through AMPK pathway.
Fig. 5: NSUN2-mediated m5C modification of ORAI2 maintains its stability.
Fig. 6: YBX1 recognizes the m5C modification of ORAI2 and regulates its mRNA stability.
Fig. 7: NSUN2 promotes GC malignant process by upregulating ORAI2 expression.
Fig. 8: NSUN2 promotes peritoneal metastasis by up-regulating ORAI2 expression in vivo.

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are not publicly available due other members of our group need to use RNA-seq data but are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Nashimoto A, Akazawa K, Isobe Y, Miyashiro I, Katai H, Kodera Y, et al. Gastric cancer treated in 2002 in Japan: 2009 annual report of the JGCA nationwide registry. Gastric Cancer 2013;16:1–27.

    Article  PubMed  Google Scholar 

  3. Thomassen I, van Gestel YR, van Ramshorst B, Luyer MD, Bosscha K, Nienhuijs SW, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014;134:622–8.

    Article  CAS  PubMed  Google Scholar 

  4. Yonemura Y, Endou Y, Sasaki T, Hirano M, Mizumoto A, Matsuda T, et al. Surgical treatment for peritoneal carcinomatosis from gastric cancer. Eur J Surg Oncol. 2010;36:1131–8.

    Article  CAS  PubMed  Google Scholar 

  5. Fushida S, Oyama K, Kinoshita J, Yagi Y, Okamoto K, Tajima H, et al. VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody. Onco Targets Ther. 2013;6:1445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 2020;19:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang C, Huang S, Zhuang H, Ruan S, Zhou Z, Huang K, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene 2020;39:4507–18.

    Article  CAS  PubMed  Google Scholar 

  8. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wiener D, Schwartz S. The epitranscriptome beyond m(6)A. Nat Rev Genet. 2021;22:119–31.

    Article  CAS  PubMed  Google Scholar 

  10. Sajini AA, Choudhury NR, Wagner RE, Bornelöv S, Selmi T, Spanos C, et al. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat Commun. 2019;10:2550.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Van Haute L, Dietmann S, Kremer L, Hussain S, Pearce SF, Powell CA, et al. Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun. 2016;7:12039.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Metodiev MD, Spåhr H, Loguercio Polosa P, Meharg C, Becker C, Altmueller J, et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 2014;10:e1004110.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.

    Article  CAS  PubMed  Google Scholar 

  14. Hussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 2013;4:255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nombela P, Miguel-López B, Blanco S. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel therapeutic opportunities. Mol Cancer. 2021;20:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han X, Wang M, Zhao YL, Yang Y, Yang YG. RNA methylations in human cancers. Semin Cancer Biol. 2021;75:97–115.

    Article  CAS  PubMed  Google Scholar 

  17. Reid R, Greene PJ, Santi DV. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res. 1999;27:3138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006;311:395–8.

    Article  CAS  PubMed  Google Scholar 

  19. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017;27:606–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Su J, Wu G, Ye Y, Zhang J, Zeng L, Huang X, et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene 2021;40:5814–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arguello AE, Li A, Sun X, Eggert TW, Mairhofer E, Kleiner RE. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun. 2022;13:4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 2018;554:123–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 2021;12:842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

    CAS  PubMed  Google Scholar 

  25. Strippoli R, Benedicto I, Pérez Lozano ML, Cerezo A, López-Cabrera M, del Pozo MA. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway. Dis Model Mech. 2008;1:264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eum HH, Kwon M, Ryu D, Jo A, Chung W, Kim N, et al. Tumor-promoting macrophages prevail in malignant ascites of advanced gastric cancer. Exp Mol Med. 2020;52:1976–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song H, Wang T, Tian L, Bai S, Chen L, Zuo Y, et al. Macrophages on the Peritoneum are involved in Gastric Cancer Peritoneal Metastasis. J Cancer. 2019;10:5377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugimoto A, Okuno T, Miki Y, Tsujio G, Sera T, Yamamoto Y, et al. EMMPRIN in extracellular vesicles from peritoneal mesothelial cells stimulates the invasion activity of diffuse-type gastric cancer cells. Cancer Lett. 2021;521:169–77.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Che X, Yu Y, Cheng Y, Bai M, Yang Z, et al. Hypoxia-autophagy axis induces VEGFA by peritoneal mesothelial cells to promote gastric cancer peritoneal metastasis through an integrin α5-fibronectin pathway. J Exp Clin Cancer Res. 2020;39:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun C, Li X, Guo E, Li N, Zhou B, Lu H, et al. MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene 2020;39:1681–95.

    Article  CAS  PubMed  Google Scholar 

  32. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014;159:1312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu Z, Marcelin G, Bauzon F, Wang H, Fu H, Dun SL, et al. pRb is an obesity suppressor in hypothalamus and high-fat diet inhibits pRb in this location. The. EMBO J. 2013;32:844–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Chhipa RR, Nakano I, Dasgupta B. The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Therap. 2014;13:596–605.

    Article  CAS  Google Scholar 

  35. Chellamuthu A, Gray SG. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells. 2020;9:1758.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fukuyama K, Epstein WL. Inhibition of RNA and protein synthesis in granular cells by actinomycin-D and puromycin. The. J Investig Dermatol. 1971;56:211–22.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Liu F, Chen W, Miao H, Liang H, Liao Z, et al. The role of RNA m(5)C modification in cancer metastasis. Int J Biol Sci. 2021;17:3369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuoka T, Yashiro M, Nishioka N, Hirakawa K, Olden K, Roberts JD. PI3K/Akt signalling is required for the attachment and spreading, and growth in vivo of metastatic scirrhous gastric carcinoma. Br J Cancer. 2012;106:1535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68:394–424.

    PubMed  Google Scholar 

  41. Delaunay S, Pascual G, Feng B, Klann K, Behm M, Hotz-Wagenblatt A, et al. Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature. 2022;607:593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mei L, Shen C, Miao R, Wang JZ, Cao MD, Zhang YS, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57(Kip2) by an m(5)C-dependent manner. Cell death Dis. 2020;11:270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dominissini D, Rechavi G. 5-methylcytosine mediates nuclear export of mRNA. Cell Res. 2017;27:717–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng M, Xie X, Han G, Zhang T, Li Y, Li Y, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood 2021;138:71–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yin H, Chen L, Piao S, Wang Y, Li Z, Lin Y, et al. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway. Cell Death Differ. 2023;30:605–617.

    Article  CAS  PubMed  Google Scholar 

  46. Prevarskaya N, Skryma R, Shuba Y. Calcium in tumour metastasis: new roles for known actors. Nat Rev Cancer. 2011;11:609–18.

    Article  CAS  PubMed  Google Scholar 

  47. Nielsen N, Lindemann O, Schwab A. TRP channels and STIM/ORAI proteins: sensors and effectors of cancer and stroma cell migration. Br J Pharmacol. 2014;171:5524–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh AK, Roy NK, Bordoloi D, Padmavathi G, Banik K, Khwairakpam AD, et al. Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sci. 2020;261:118372.

    Article  CAS  PubMed  Google Scholar 

  49. Sanchez-Collado J, Lopez JJ, Cantonero C, Jardin I, Regodón S, Redondo PC, et al. Orai2 Modulates Store-Operated Ca(2+) Entry and Cell Cycle Progression in Breast Cancer Cells. Cancers. 2021;14:114.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wu S, Chen M, Huang J, Zhang F, Lv Z, Jia Y, et al. ORAI2 Promotes Gastric Cancer Tumorigenicity and Metastasis through PI3K/Akt Signaling and MAPK-Dependent Focal Adhesion Disassembly. Cancer Res. 2021;81:986–1000.

    Article  CAS  PubMed  Google Scholar 

  51. Haim Y, Blüher M, Slutsky N, Goldstein N, Klöting N, Harman-Boehm I, et al. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy 2015;11:2074–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Logotheti S, Marquardt S, Gupta SK, Richter C, Edelhäuser BAH, Engelmann D, et al. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Theranostics 2020;10:9620–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem. 1964;239:375–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_0622). We would like to thank the Core Facility of the First Affiliated Hospital of Nanjing Medical University for its help in the detection of experimental samples.

Author information

Authors and Affiliations

Authors

Contributions

DZ conceptualized and supervised the research. KL, PX and JL designed and performed most experiments. HG, ZY performed animal experiments. SH and BL were engaged in biostatistics and bioinformatics analysis. HX, LY, and ZX is responsible for the collection of tissues and follow-up of patients.

Corresponding author

Correspondence to Diancai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Xu, P., Lv, J. et al. Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification. Oncogene 42, 1980–1993 (2023). https://doi.org/10.1038/s41388-023-02707-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02707-5

This article is cited by

Search

Quick links