Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery

Abstract

Prostate cancer is the most commonly diagnosed noncutaneous cancer in American men. TDRD1, a germ cell-specific gene, is erroneously expressed in more than half of prostate tumors, but its role in prostate cancer development remains elusive. In this study, we identified a PRMT5-TDRD1 signaling axis that regulates the proliferation of prostate cancer cells. PRMT5 is a protein arginine methyltransferase essential for small nuclear ribonucleoprotein (snRNP) biogenesis. Methylation of Sm proteins by PRMT5 is a critical initiation step for assembling snRNPs in the cytoplasm, and the final snRNP assembly takes place in Cajal bodies in the nucleus. By mass spectrum analysis, we found that TDRD1 interacts with multiple subunits of the snRNP biogenesis machinery. In the cytoplasm, TDRD1 interacts with methylated Sm proteins in a PRMT5-dependent manner. In the nucleus, TDRD1 interacts with Coilin, the scaffold protein of Cajal bodies. Ablation of TDRD1 in prostate cancer cells disrupted the integrity of Cajal bodies, affected the snRNP biogenesis, and reduced cell proliferation. Taken together, this study represents the first characterization of TDRD1 functions in prostate cancer development and suggests TDRD1 as a potential therapeutic target for prostate cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TDRD1 ablation in VCaP cells reduced cell proliferation.
Fig. 2: TDRD1 is present in both cytoplasm and nucleus, but primarily in the cytoplasm.
Fig. 3: Cytoplasmic TDRD1 protein interacts with Sm proteins.
Fig. 4: TDRD1 interacts with SNRPD3 through the cTD4 in a methylated arginine-dependent manner.
Fig. 5: TDRD1 associates with Coilin in nuclei.
Fig. 6: Mapping the interacting regions between TDRD1 and Coilin.
Fig. 7: TDRD1 ablation deregulates Cajal body formation and small RNA production.
Fig. 8: TDRD1 contributes to the resistance of prostate cancer cells against antiandrogens.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article, Supplementary Information, or in the figshare repository with the https://doi.org/10.6084/m9.figshare.21986486.

References

  1. Xiao L, Lanz RB, Frolov A, Castro PD, Zhang Z, Dong B, et al. The germ cell gene TDRD1 as an ERG target gene and a novel prostate cancer biomarker. Prostate. 2016;76:1271–84.

    Article  CAS  PubMed  Google Scholar 

  2. Kacprzyk LA, Laible M, Andrasiuk T, Brase JC, Borno ST, Falth M, et al. ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1) in ERG rearrangement-positive prostate cancer. PLoS ONE. 2013;8:e59976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paulo P, Ribeiro FR, Santos J, Mesquita D, Almeida M, Barros-Silva JD, et al. Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia. 2012;14:600–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu R, Wang GG. Tudor: a versatile family of histone methylation ‘readers’. Trends Biochem Sci. 2013;38:546–55.

    Article  CAS  PubMed  Google Scholar 

  5. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. Loss of the Mili-interacting Tudor domain-containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat Struct Mol Biol. 2009;16:639–46.

    Article  CAS  PubMed  Google Scholar 

  6. Saxe JP, Chen M, Zhao H, Lin H. Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J. 2013;32:1869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13:37–50.

    Article  CAS  PubMed  Google Scholar 

  8. Beketova E, Owens JL, Asberry AM, Hu CD. PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther. 2021;29:264–76.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deng X, Shao G, Zhang HT, Li C, Zhang D, Cheng L, et al. Protein arginine methyltransferase 5 functions as an epigenetic activator of the androgen receptor to promote prostate cancer cell growth. Oncogene. 2017;36:1223–31.

    Article  CAS  PubMed  Google Scholar 

  10. Li WJ, He YH, Yang JJ, Hu GS, Lin YA, Ran T, et al. Profiling PRMT methylome reveals roles of hnRNPA1 arginine methylation in RNA splicing and cell growth. Nat Commun. 2021;12:1946.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. PLoS ONE. 2012;7:e44033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anchi T, Tamura K, Furihata M, Satake H, Sakoda H, Kawada C, et al. SNRPE is involved in cell proliferation and progression of high-grade prostate cancer through the regulation of androgen receptor expression. Oncol Lett. 2012;3:264–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W, et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 2007;67:5117–25.

    Article  CAS  PubMed  Google Scholar 

  14. Mathioudakis N, Palencia A, Kadlec J, Round A, Tripsianes K, Sattler M, et al. The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors. RNA. 2012;18:2056–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang HY, Houwing S, Kaaij LJ, Meppelink A, Redl S, Gauci S, et al. Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. EMBO J. 2011;30:3298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Babakhanzadeh E, Khodadadian A, Rostami S, Alipourfard I, Aghaei M, Nazari M, et al. Testicular expression of TDRD1, TDRD5, TDRD9 and TDRD12 in azoospermia. BMC Med Genet. 2020;21:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun. 2017;8:1411.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen C, Nott TJ, Jin J, Pawson T. Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol. 2011;12:629–42.

    Article  CAS  PubMed  Google Scholar 

  19. Meister G, Eggert C, Buhler D, Brahms H, Kambach C, Fischer U. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol. 2001;11:1990–4.

    Article  CAS  PubMed  Google Scholar 

  20. Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell. 2005;18:263–72.

    Article  CAS  PubMed  Google Scholar 

  21. Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, et al. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol. 2001;21:8289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brahms H, Meheus L, de Brabandere V, Fischer U, Luhrmann R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B’ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA. 2001;7:1531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Friesen WJ, Massenet S, Paushkin S, Wyce A, Dreyfuss G. SMN, the product of the spinal muscular atrophy gene, binds preferentially to dimethylarginine-containing protein targets. Mol Cell. 2001;7:1111–7.

    Article  CAS  PubMed  Google Scholar 

  24. Boormans JL, Korsten H, Ziel-van der Made AJ, van Leenders GJ, de Vos CV, Jenster G, et al. Identification of TDRD1 as a direct target gene of ERG in primary prostate cancer. Int J Cancer. 2013;133:335–45.

    Article  CAS  PubMed  Google Scholar 

  25. Stanek D. Cajal bodies and snRNPs—friends with benefits. RNA Biol. 2017;14:671–9.

    Article  PubMed  Google Scholar 

  26. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carrero ZI, Velma V, Douglas HE, Hebert MD. Coilin phosphomutants disrupt Cajal body formation, reduce cell proliferation and produce a distinct coilin degradation product. PLoS ONE. 2011;6:e25743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hebert MD, Shpargel KB, Ospina JK, Tucker KE, Matera AG. Coilin methylation regulates nuclear body formation. Dev Cell. 2002;3:329–37.

    Article  CAS  PubMed  Google Scholar 

  29. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI. The nucleolus under stress. Mol Cell. 2010;40:216–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cioce M, Lamond AI. Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol. 2005;21:105–31.

    Article  CAS  PubMed  Google Scholar 

  31. Rebelo L, Almeida F, Ramos C, Bohmann K, Lamond AI, Carmo-Fonseca M. The dynamics of coiled bodies in the nucleus of adenovirus-infected cells. Mol Biol Cell. 1996;7:1137–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou T, Feng Q. Androgen receptor signaling and spatial chromatin organization in castration-resistant prostate cancer. Front Med. 2022;9:924087.

    Article  Google Scholar 

  33. Zhao H, Freedland S. Enzalutamide treatment for the whole spectrum of CRPC. Nat Rev Urol. 2018;15:663–5.

    Article  CAS  PubMed  Google Scholar 

  34. Feng Q, He B. Androgen receptor signaling in the development of castration-resistant prostate cancer. Front Oncol. 2019;9:858.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beketova E, Fang S, Owens JL, Liu S, Chen X, Zhang Q, et al. Protein arginine methyltransferase 5 promotes pICln-dependent androgen receptor transcription in castration-resistant prostate cancer. Cancer Res. 2020;80:4904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mounir Z, Korn JM, Westerling T, Lin F, Kirby CA, Schirle M, et al. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the androgen receptor. Elife. 2016;5:e13964.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Platani M, Goldberg I, Swedlow JR, Lamond AI. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol. 2000;151:1561–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Platani M, Goldberg I, Lamond AI, Swedlow JR. Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol. 2002;4:502–8.

    Article  CAS  PubMed  Google Scholar 

  39. Arias Escayola D, Neugebauer KM. Dynamics and function of nuclear bodies during embryogenesis. Biochemistry. 2018;57:2462–9.

    Article  CAS  PubMed  Google Scholar 

  40. Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell. 2021;184:3612–25.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sapir T, Shifteh D, Pahmer M, Goel S, Maitra R. Protein arginine methyltransferase 5 (PRMT5) and the ERK1/2 & PI3K pathways: a case for PRMT5 inhibition and combination therapies in cancer. Mol Cancer Res. 2021;19:388–94.

    Article  CAS  PubMed  Google Scholar 

  42. Xiao W, Chen X, Liu L, Shu Y, Zhang M, Zhong Y. Role of protein arginine methyltransferase 5 in human cancers. Biomed Pharmacother. 2019;114:108790.

    Article  CAS  PubMed  Google Scholar 

  43. Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget. 2018;9:36705–18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, et al. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 2010;24:2772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, Hiyoshi M, et al. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci USA. 2006;103:15894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71.

    Article  PubMed  Google Scholar 

  47. Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. BMC Bioinforma. 2011;12:480.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (R01CA211861 to BH, R33AI122418 and R33AI133697 to QF, and S10OD026827-01A1 to BBIC core at the University of Houston).

Author information

Authors and Affiliations

Authors

Contributions

QF and BH conceptualized the project. QF and HK planned and designed the project. HK, AB, LH, TZ, MB, SZ and AM performed the experiments. SYJ performed mass spectrum. QF, HK and BH wrote the manuscript. All other authors helped in the discussion and revision of the manuscript.

Corresponding authors

Correspondence to Bin He or Qin Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The mouse experiments were performed under the protocol (AUP-0121-0002) approved by IACUC at the Houston Methodist Research Institute and protocol (PROTO202000026) approved by IACUC at the University of Houston.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Barua, A., Huang, L. et al. The cancer testis antigen TDRD1 regulates prostate cancer proliferation by associating with the snRNP biogenesis machinery. Oncogene 42, 1821–1831 (2023). https://doi.org/10.1038/s41388-023-02690-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02690-x

This article is cited by

Search

Quick links