Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SUMOylation of RNF146 results in Axin degradation and activation of Wnt/β-catenin signaling to promote the progression of hepatocellular carcinoma

Abstract

Aberrant SUMOylation contributes to the progression of hepatocellular carcinoma (HCC), yet the molecular mechanisms have not been well elucidated. RING-type E3 ubiquitin ligase RNF146 is a key regulator of the Wnt/β-catenin signaling pathway, which is frequently hyperactivated in HCC. Here, it is identified that RNF146 can be modified by SUMO3. By mutating all lysines in RNF146, we found that K19, K61, K174 and K175 are the major sites for SUMOylation. UBC9/PIAS3/MMS21 and SENP1/2/6 mediated the conjugation and deconjugation of SUMO3, respectively. Furthermore, SUMOylation of RNF146 promoted its nuclear localization, while deSUMOylation induced its cytoplasmic localization. Importantly, SUMOylation promotes the association of RNF146 with Axin to accelerate the ubiquitination and degradation of Axin. Intriguingly, only UBC9/PIAS3 and SENP1 can act at K19/K175 in RNF146 and affect its role in regulating the stability of Axin. In addition, inhibiting RNF146 SUMOylation suppressed the progression of HCC both in vitro and in vivo. And, patients with higher expression of RNF146 and UBC9 have the worst prognosis. Taken together, we conclude that RNF146 SUMOylation at K19/K175 promotes its association with Axin and accelerates Axin degradation, thereby enhancing β-catenin signaling and contributing to cancer progression. Our findings reveal that RNF146 SUMOylation is a potential therapeutic target in HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNF146 is SUMOylated by SUMO3 at lysine 19, lysine 61, and lysine 174/175.
Fig. 2: PIAS3 and MMS21 are the dominant SUMO E3 ligases for RNF146.
Fig. 3: SENP1/2/6 are the dominant deSUMOylases responsible for removing SUMOylation from RNF146.
Fig. 4: SUMOylation at lysine 19 and lysine 175 promotes the degradation of Axin and upregulation of β-catenin.
Fig. 5: RNF146 SUMOylation activates β-catenin signaling and promotes the proliferation of HCC cells in vitro.
Fig. 6: Abolishing RNF146 SUMOylation inhibits HCC cell tumorigenesis.
Fig. 7: The clinical significance of RNF146 SUMOylation/Axin/β-catenin axis in human HCC tissues.
Fig. 8: Schematic model of the SUMO-RNF146-Axin pathway.

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Albrecht LV, Tejeda-Muñoz N, De Robertis EM. Cell biology of canonical Wnt signaling. Annu Rev Cell Dev Biol. 2021;37:369–89.

    Article  CAS  PubMed  Google Scholar 

  2. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179:561–77 e522.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Chen F, Chandrashekar DS, Varambally S, Creighton CJ. Proteogenomic characterization of 2002 human cancers reveals pan-cancer molecular subtypes and associated pathways. Nat Commun. 2022;13:2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parsons MJ, Tammela T, Dow LE. WNT as a driver and dependency in cancer. Cancer Discov. 2021;11:2413–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6:307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han Q, Lv L, Wei J, Lei X, Lin H, Li G, et al. Vps4A mediates the localization and exosome release of beta-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 2019;457:47–59.

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Wang T, Zhu H, Yan R, Li X, Zhang C, et al. Neddylation is essential for beta-catenin degradation in Wnt signaling pathway. Cell Rep. 2022;38:110538.

    Article  CAS  PubMed  Google Scholar 

  9. Schaefer KN, Peifer M. Wnt/beta-catenin signaling regulation and a role for biomolecular condensates. Dev Cell. 2019;48:429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Liu S, Mickanin C, Feng Y, Charlat O, Michaud GA, et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol. 2011;13:623–9.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson DN, Alula KM, Delgado-Deida Y, Tabti R, Turner K, Wang X, et al. The synthetic small molecule FL3 combats intestinal tumorigenesis via Axin1-mediated inhibition of Wnt/beta-catenin signaling. Cancer Res. 2020;80:3519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fei C, Li Z, Li C, Chen Y, Chen Z, He X, et al. Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol. 2013;33:4095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Croy HE, Fuller CN, Giannotti J, Robinson P, Foley AVA, Yamulla RJ, et al. The poly(ADP-ribose) polymerase enzyme tankyrase antagonizes activity of the β-catenin destruction complex through ADP-ribosylation of axin and APC2. J Biol Chem. 2016;291:12747–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, et al. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature. 2015;517:223–6.

    Article  CAS  PubMed  Google Scholar 

  15. Morrone S, Cheng Z, Moon RT, Cong F, Xu W. Crystal structure of a Tankyrase-Axin complex and its implications for Axin turnover and Tankyrase substrate recruitment. Proc Natl Acad Sci USA. 2012;109:1500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han W, Koo Y, Chaieb L, Keum BR, Han JK. UCHL5 controls beta-catenin destruction complex function through Axin1 regulation. Sci Rep. 2022;12:3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji L, Lu B, Zamponi R, Charlat O, Aversa R, Yang Z, et al. USP7 inhibits Wnt/beta-catenin signaling through promoting stabilization of Axin. Nat Commun. 2019;10:4184.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou L, Zheng L, Hu K, Wang X, Zhang R, Zou Y, et al. SUMOylation stabilizes hSSB1 and enhances the recruitment of NBS1 to DNA damage sites. Signal Transduct Target Ther. 2020;5:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin Q, Yu B, Wang X, Zhu S, Zhao G, Jia M, et al. K6-linked SUMOylation of BAF regulates nuclear integrity and DNA replication in mammalian cells. Proc Natl Acad Sci USA. 2020;117:10378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang W, Robichaux WG 3rd, Mei FC, Lin W, Li L, Pan S, et al. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates. Sci Adv. 2022;8:eabm2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seeler JS, Dejean A. SUMO and the robustness of cancer. Nat Rev Cancer. 2017;17:184–97.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Schoonderwoerd MJA, Kroonen JS, de Graaf IJ, Sluijter M, Ruano D, et al. Targeting pancreatic cancer by TAK-981: a SUMOylation inhibitor that activates the immune system and blocks cancer cell cycle progression in a preclinical model. Gut. 2022;71:2266–83.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, et al. Cbx4 governs HIF-1alpha to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 2014;25:118–31.

    Article  CAS  PubMed  Google Scholar 

  24. Shangguan X, He J, Ma Z, Zhang W, Ji Y, Shen K, et al. SUMOylation controls the binding of hexokinase 2 to mitochondria and protects against prostate cancer tumorigenesis. Nat Commun. 2021;12:1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakamura A, Grossman S, Song K, Xega K, Zhang Y, Cvet D, et al. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood 2022;139:2770–81.

    Article  CAS  PubMed  Google Scholar 

  26. Demel UM, Boger M, Yousefian S, Grunert C, Zhang L, Hotz PW, et al. Activated SUMOylation restricts MHC class I antigen presentation to confer immune evasion in cancer. J Clin Investig. 2022;132:e152383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi HK, Choi KC, Yoo JY, Song M, Ko SJ, Kim CH, et al. Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. Mol Cell. 2011;43:203–16.

    Article  CAS  PubMed  Google Scholar 

  28. Karami S, Lin FM, Kumar S, Bahnassy S, Thangavel H, Quttina M, et al. Novel SUMO-protease SENP7S regulates beta-catenin signaling and mammary epithelial cell transformation. Sci Rep. 2017;7:46477.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu L, Sandow JJ, Leslie Pedrioli DM, Samson AL, Silke N, Kratina T, et al. Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. Sci Adv. 2022;8:eabh2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li N, Zhang Y, Han X, Liang K, Wang J, Feng L, et al. Poly-ADP ribosylation of PTEN by tankyrases promotes PTEN degradation and tumour growth. Genes Dev. 2015;29:157–70.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hu K, Wu W, Li Y, Lin L, Chen D, Yan H, et al. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. EMBO Rep. 2019;20:e46166.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shen J, Yu Z, Li N. The E3 ubiquitin ligase RNF146 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of Axin1. Biochem Biophys Res Commun. 2018;503:991–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Lu B, Castillo J, Zhang Y, Yang Z, McAllister G, et al. Tankyrase inhibitor sensitizes lung cancer cells to endothelial growth factor receptor (EGFR) inhibition via stabilizing angiomotins and inhibiting YAP signaling. J Biol Chem. 2016;291:15256–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao Y, Song C, Hui L, Li CY, Wang J, Tian Y, et al. Overexpression of RNF146 in non-small cell lung cancer enhances proliferation and invasion of tumours through the Wnt/β-catenin signaling pathway. PLoS ONE. 2014;9:e85377.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Biederstädt A, Hassan Z, Schneeweis C, Schick M, Schneider L, Muckenhuber A, et al. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut. 2020;69:1472–82.

    Article  PubMed  Google Scholar 

  36. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science. 2010;328:240–3.

    Article  CAS  PubMed  Google Scholar 

  37. Streich FC Jr, Lima CD. Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 2016;536:304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yunus AA, Lima CD. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol Cell. 2009;35:669–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T, Carr SA, et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol. 2018;36:880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao W, Zhang X, Rong J. SUMOylation as a therapeutic target for myocardial infarction. Front Cardiovasc Med. 2021;8:701583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23:715–31.

    Article  CAS  PubMed  Google Scholar 

  42. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614–20.

    Article  CAS  PubMed  Google Scholar 

  43. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  CAS  PubMed  Google Scholar 

  44. van Veelen W, Le NH, Helvensteijn W, Blonden L, Theeuwes M, Bakker ER, et al. β-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut. 2011;60:1204–12.

    Article  PubMed  Google Scholar 

  45. Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell. 2022;82:2298–314.

    Article  CAS  PubMed  Google Scholar 

  46. Dagg RA, Zonderland G, Lombardi EP, Rossetti GG, Groelly FJ, Barroso S, et al. A transcription-based mechanism for oncogenic beta-catenin-induced lethality in BRCA1/2-deficient cells. Nat Commun. 2021;12:4919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao Q, Xie Y, Zheng Y, Jiang S, Liu W, Mu W, et al. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res. 2014;42:W325–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beauclair G, Bridier-Nahmias A, Zagury JF, Saib A, Zamborlini A. JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs. Bioinformatics 2015;31:3483–91.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma A, Lysenko A, López Y, Dehzangi A, Sharma R, Reddy H, et al. HseSUMO: Sumoylation site prediction using half-sphere exposures of amino acids residues. BMC Genomics. 2019;19:982.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, et al. SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Res. 2018;46:5195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci USA. 2004;101:2882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsiao SJ, Smith S. Tankyrase function at telomeres, spindle poles, and beyond. Biochimie. 2008;90:83–92.

    Article  CAS  PubMed  Google Scholar 

  53. Chandrakumar AA, Coyaud E, Marshall CB, Ikura M, Raught B, Rottapel R. Tankyrase regulates epithelial lumen formation via suppression of Rab11 GEFs. J Cell Biol. 2021;220:e202008037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hu K, Li Y, Wu W, Xie L, Yan H, Cai Y, et al. ATM-dependent recruitment of BRD7 is required for transcriptional repression and DNA Repair at DNA breaks flanking transcriptional active regions. Adv Sci. 2020;7:2000157.

    Article  CAS  Google Scholar 

  55. Varejao N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. EMBO J. 2018;37:e98306.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kroonen JS, Vertegaal ACO. Targeting SUMO signaling to wrestle cancer. Trends Cancer. 2021;7:496–510.

    Article  CAS  PubMed  Google Scholar 

  57. Xiao J, Sun F, Wang YN, Liu B, Zhou P, Wang FX, et al. UBC9 deficiency enhances immunostimulatory macrophage activation and subsequent antitumour T cell response in prostate cancer. J Clin Investig. 2023;133:e158352.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Baik H, Boulanger M, Hosseini M, Kowalczyk J, Zaghdoudi S, Salem T, et al. Targeting the SUMO pathway primes all-trans retinoic acid-induced differentiation of nonpromyelocytic acute myeloid leukemias. Cancer Res. 2018;78:2601–13.

    Article  CAS  PubMed  Google Scholar 

  59. Kim YS, Keyser SG, Schneekloth JS Jr. Synthesis of 2’,3’,4’-trihydroxyflavone (2-D08), an inhibitor of protein sumoylation. Bioorg Med Chem Lett. 2014;24:1094–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujino N, Kubo H, Maciewicz RA. Phenotypic screening identifies Axl kinase as a negative regulator of an alveolar epithelial cell phenotype. Lab Investig. 2017;97:1047–62.

    Article  CAS  PubMed  Google Scholar 

  61. Jin Y, Nie D, Li J, Du X, Lu Y, Li Y, et al. Gas6/AXL signaling regulates self-renewal of chronic myelogenous leukemia stem cells by stabilizing β-catenin. Clin Cancer Res. 2017;23:2842–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the National Key Research and Development Program of China (2021YFA0909300), the Natural Science Foundation of China (82073067, 81872140, 81621004, 81420108026 and 82172636); Guangdong Science and Technology Department (2019B020226003, 2021A0505030084, 2020B1212060018, and 2020B1212030004); Tip-top Scientific and Technical Innovative Youth Talents of Guangdong special support program (2021TQ06Y125); The Key R & D and promotion in Henan Province (212102310114).

Author information

Authors and Affiliations

Authors

Contributions

Research conception and design: DY, KSH, WJL, QFH; Experimental of methodology: KSH, WJL, YXZ, YL, WJW; Acquisition of data (provided animals, patient samples and provided facilities, etc.): QFH, JYZ, YSZ; Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): KSH, WJL, QFH, YXZ, YL, YSZ, YTQ; Write manuscript: KSH, WJL, QFH; Technical, or material support (e.g., organizing data, constructing databases,): QFH, LL, KSH.

Corresponding authors

Correspondence to Kaishun Hu or Dong Yin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

For the clinical specimens, ethical approval was obtained from the Ethics Committee of Sun Yat-Sen Memorial Hospital (Guangzhou, China). Informed consent was obtained from each patient. Animal study was approved by the Animal Research Committee of Sun Yat-sen University Cancer Center. Ethical approval was obtained from the Ethics Committee of Sun Yat-Sen Memorial Hospital (Guangzhou, China).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Han, Q., Zhu, Y. et al. SUMOylation of RNF146 results in Axin degradation and activation of Wnt/β-catenin signaling to promote the progression of hepatocellular carcinoma. Oncogene 42, 1728–1740 (2023). https://doi.org/10.1038/s41388-023-02689-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02689-4

This article is cited by

Search

Quick links