Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNF31 promotes tumorigenesis via inhibiting RIPK1 kinase-dependent apoptosis

Abstract

It is well established that interferon (IFN) and tumor necrosis factor (TNF) could synergistically promote antitumor toxicity and avoid resistance of antigen-negative tumors during cancer immunotherapy. The linear ubiquitin chain assembly complex (LUBAC) has been widely known to regulate receptor-interacting protein kinase-1(RIPK1) kinase activity and TNF-mediated cell death during inflammation and embryogenesis. However, whether LUBAC and RIPK1 kinase activity in tumor microenvironment could regulate antitumor immunity are still not very clear. Here, we demonstrated a cancer cell-intrinsic role of LUBAC complex in tumor microenvironment to promote tumorigenesis. Lacking LUBAC component RNF31 in B16 melanoma cells but not immune cells including macrophages or dendritic cells greatly impaired tumor growth by increasing intratumoral CD8+ T cells infiltration. Mechanistically, we found that tumor cells without RNF31 shown severe apoptosis-mediated cell death caused by TNFα/IFNγ in the tumor microenvironment. Most importantly, we found that RNF31 could limit RIPK1 kinase activity and further prevent tumor cell death in a transcription-independent manner, suggesting a crucial role of RIPK1 kinase activity in tumorigenesis. Together, our results demonstrate an essential role of RNF31 and RIPK1 kinase activity in tumorigenesis and imply that RNF31 inhibition could be harnessed to enhance antitumor toxicity during tumor immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNF31 in tumor cells is critical for tumorigenesis and antitumor immunity.
Fig. 2: RNF31 in macrophages or dendritic cells is dispensable for tumorigenesis and antitumor immunity.
Fig. 3: Loss of RNF31 promotes TNFα/IFNγ-induced RIPK1-kinase-dependent melanoma cell death.
Fig. 4: RNF31 regulates TNFα/IFNγ-induced tumor cell death in a transcription-independent manner.
Fig. 5: RNF31-mediated linear ubiquitination of RIPK1 limit RIPK1-kinase activity in tumor cell.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information Files.

References

  1. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol. 2020;11:940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel SA, Minn AJ. Combination cancer therapy with immune checkpoint blockade: mechanisms and strategies. Immunity. 2018;48:417–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmadzadeh M, Johnson LA, Heemskerk B, Wunderlich JR, Dudley ME, White DE, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kearney CJ, Lalaoui N, Freeman AJ, Ramsbottom KM, Silke J, Oliaro J. PD-L1 and IAPs co-operate to protect tumors from cytotoxic lymphocyte-derived TNF. Cell Death Differ. 2017;24:1705–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kearney CJ, Vervoort SJ, Hogg SJ, Ramsbottom KM, Freeman AJ, Lalaoui N, et al. Tumor immune evasion arises through loss of TNF sensitivity. Sci Immunol. 2018;3:eaar3451.

    Article  PubMed  Google Scholar 

  12. Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, et al. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science. 2018;359:770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vredevoogd DW, Kuilman T, Ligtenberg MA, Boshuizen J, Stecker KE, de Bruijn B, et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell. 2019;178:585–599.e515.

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda F. Linear ubiquitination signals in adaptive immune responses. Immunol Rev. 2015;266:222–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwai K, Fujita H, Sasaki Y. Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat Rev Mol Cell Biol. 2014;15:503–8.

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu Y, Taraborrelli L, Walczak H. Linear ubiquitination in immunity. Immunol Rev. 2015;266:190–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujita H, Rahighi S, Akita M, Kato R, Sasaki Y, Wakatsuki S, et al. Mechanism underlying IkappaB kinase activation mediated by the linear ubiquitin chain assembly complex. Mol Cell Biol. 2014;34:1322–35.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell. 2009;136:1098–109.

    Article  CAS  PubMed  Google Scholar 

  19. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, et al. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009;11:123–32.

    Article  CAS  PubMed  Google Scholar 

  20. Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13:1178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang Y, Tu H, Liu G, Zheng G, Wang M, Li L, et al. RNF31 regulates skin homeostasis by protecting epidermal keratinocytes from cell death. J Immunol. 2018;200:4117–24.

    Article  CAS  PubMed  Google Scholar 

  23. Teh CE, Lalaoui N, Jain R, Policheni AN, Heinlein M, Alvarez-Diaz S, et al. Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nat Commun. 2016;7:13353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu X, Tang Y, Zhang S, Zhao X, Lin X. MyD88-dependent signaling is required for HOIP deficiency-induced autoinflammation. J Immunol. 2021;207:542–54.

    Article  CAS  PubMed  Google Scholar 

  25. Freeman AJ, Vervoort SJ, Michie J, Ramsbottom KM, Silke J, Kearney CJ, et al. HOIP limits anti-tumor immunity by protecting against combined TNF and IFN-gamma-induced apoptosis. EMBO Rep. 2021;22:e53391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frey N, Tortola L, Egli D, Janjuha S, Rothgangl T, Marquart KF, et al. Loss of Rnf31 and Vps4b sensitizes pancreatic cancer to T cell-mediated killing. Nat Commun. 2022;13:1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hua F, Hao W, Wang L, Li S. Linear ubiquitination mediates EGFR-induced NF-kappaB pathway and tumor development. Int J Mol Sci. 2021;22:11875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niu Z, Li X, Dong S, Gao J, Huang Q, Yang H, et al. The E3 ubiquitin ligase HOIP inhibits cancer cell apoptosis via modulating PTEN stability. J Cancer. 2021;12:6553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Queisser MA, Dada LA, Deiss-Yehiely N, Angulo M, Zhou G, Kouri FM, et al. HOIL-1L functions as the PKCzeta ubiquitin ligase to promote lung tumor growth. Am J Respir Crit Care Med. 2014;190:688–98.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang CT, Yang J, Liu ZD, Chen Y, Zeng C. Taraxasterol acetate targets RNF31 to inhibit RNF31/p53 axis-driven cell proliferation in colorectal cancer. Cell Death Discov. 2021;7:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu J, Zhao C, Zhuang T, Jonsson P, Sinha I, Williams C, et al. RING finger protein 31 promotes p53 degradation in breast cancer cells. Oncogene. 2016;35:1955–64.

    Article  CAS  PubMed  Google Scholar 

  32. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. St Paul M, Ohashi PS. The roles of CD8(+) T cell subsets in antitumor immunity. Trends Cell Biol. 2020;30:695–704.

    Article  Google Scholar 

  36. Atkinson EA, Barry M, Darmon AJ, Shostak I, Turner PC, Moyer RW, et al. Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of the direct action of granzyme B. J Biol Chem. 1998;273:21261–6.

    Article  CAS  PubMed  Google Scholar 

  37. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 2019;20:19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thapa RJ, Nogusa S, Chen P, Maki JL, Lerro A, Andrake M, et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci USA. 2013;110:E3109–3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Geserick P, Wang J, Schilling R, Horn S, Harris PA, Bertin J, et al. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis. 2015;6:e1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6:402.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zuo Y, Feng Q, Jin L, Huang F, Miao Y, Liu J, et al. Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat Commun. 2020;11:1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol. 2014;192:5476–80.

    Article  CAS  PubMed  Google Scholar 

  43. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature. 2011;471:591–6.

    Article  CAS  PubMed  Google Scholar 

  44. Hanggi K, Vasilikos L, Valls AF, Yerbes R, Knop J, Spilgies LM, et al. RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death Dis. 2017;8:e2588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M, et al. RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell. 2018;34:757–74.e757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patel S, Webster JD, Varfolomeev E, Kwon YC, Cheng JH, Zhang J, et al. RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death Differ. 2020;27:161–75.

    Article  CAS  PubMed  Google Scholar 

  47. Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 2014;157:1189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 2014;157:1175–88.

    Article  CAS  PubMed  Google Scholar 

  49. Lin J, Kumari S, Kim C, Van TM, Wachsmuth L, Polykratis A, et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature. 2016;540:124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129–33.

    Article  CAS  PubMed  Google Scholar 

  51. Vanden Berghe T, Kaiser WJ. RIPK1 prevents aberrant ZBP1-initiated necroptosis. Oncotarget. 2017;8:1–2.

    Article  PubMed  Google Scholar 

  52. Schmukle AC, Walczak H. No one can whistle a symphony alone - how different ubiquitin linkages cooperate to orchestrate NF-kappaB activity. J Cell Sci. 2012;125:549–59.

    Article  CAS  PubMed  Google Scholar 

  53. Boisson B, Laplantine E, Dobbs K, Cobat A, Tarantino N, Hazen M, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212:939–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the grant from National Key Research and Development Program of China (2019YFA0508502 to Xin Lin), National Natural Science Foundation of China (31930039, 81630058, 91942303, 31821003 to XL, and 81971469, 31670904 to XZ), and annual funding from Tsinghua University-Peking University Jointed Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

JZ, HT and XL conceived and designed the study. JZ performed most of experiments. HT and ZZ provided help for some experiments. JZ, HT and ZZ analyzed and interpreted data. JZ, HT and XL wrote the manuscript, with all authors contributing to writing and providing feedback.

Corresponding author

Correspondence to Xin Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tu, H., Zheng, Z. et al. RNF31 promotes tumorigenesis via inhibiting RIPK1 kinase-dependent apoptosis. Oncogene 42, 1585–1596 (2023). https://doi.org/10.1038/s41388-023-02669-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02669-8

This article is cited by

Search

Quick links