Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma

Abstract

Emerging evidence has indicated that peroxisome proliferator-activated receptor-gamma coactivator-1α (PPARGC1A) is involved in hepatocellular carcinoma (HCC). However, its detailed function and up- and downstream mechanisms are incompletely understood. In this study, we confirmed that PPAGC1A is lowly expressed in HCC and is associated with poor prognosis using large-scale public datasets and in-house cohorts. PPAGC1A was found to impair the progression and sensitivity of HCC to lenvatinib. Mechanistically, PPAGC1A repressed bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) by inhibiting WNT/β-catenin signaling. BAMBI mediated the function of PPARGC1A and regulated ACSL5 through TGF-β/SMAD signaling. PPARGC1A/BAMBI regulated ROS production and ferroptosis-related cell death by controlling ACSL5. PPARGC1A/BAMBI/ACSL5 axis was hypoxia-responsive. METTL3 and WTAP silenced PPARGC1A in an m6A-YTHDF2-dependent way under normoxia and hypoxia, respectively. Metformin restored PPARGC1A expression by reducing its m6A modification via inhibiting METTL3. In animal models and patient-derived organoids, consistent functional data of PPARGC1A/BAMBI/ACSL5 were observed. Conclusions: These findings provide new insights into the role of the aberrant PPARGC1A/BAMBI/ACSL5 axis in HCC. And the mechanism of PPARGC1A dysregulation was explained by m6A modification. Metformin may benefit HCC patients with PPARGC1A dysregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PPARGC1A was significantly downregulated in HCC and low PPARGC1A indicated a poor prognosis.
Fig. 2: PPARGC1A negatively regulated BAMBI in HCC via Wnt/β-catenin signaling.
Fig. 3: The PPARGC1A/BAMBI axis was involved with progression of HCC and sensitivity to lenvatinib.
Fig. 4: ACSL5 was regulated by PPARGC1A/BAMBI axis in a TGF-β/Smad signaling-dependent way.
Fig. 5: PPARGC1A/BAMBI influenced ROS production and sensitivity to ferroptosis by regulating ACSL5.
Fig. 6: PPARGC1A was hypoxia-responsive and epigenetically regulated by m6A modification induced by METTL3 or WTAP in a YTHDF2-dependent way.
Fig. 7: Metformin enhanced PPARGC1A levels by reducing m6A mRNA methylation.
Fig. 8: Aberrant PPARGC1A/BAMBI/ACSL5 axis changes and their function were validated in animal or patient models.

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. de Lope CR, Tremosini S, Forner A, Reig M, Bruix J. Management of HCC. J Hepatol. 2012;56(Suppl 1):S75–87.

    Article  PubMed  Google Scholar 

  3. Mak LY, Cruz-Ramón V, Chinchilla-López P, Torres HA, LoConte NK, Rice JP, et al. Global epidemiology, prevention, and management of hepatocellular carcinoma. Am Soc Clin Oncol Educ Book. 2018;38:262–79.

    Article  PubMed  Google Scholar 

  4. Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5:146.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Raoul JL, Forner A, Bolondi L, Cheung TT, Kloeckner R, de Baere T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36.

    Article  CAS  PubMed  Google Scholar 

  6. Khan AA, Liu ZK, Xu X. Recent advances in immunotherapy for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2021;20:511–20.

    Article  CAS  PubMed  Google Scholar 

  7. Ma T, Meng L, Wang X, Tian Z, Wang J, Liu X, et al. TNFSF13B and PPARGC1A expression is associated with tumor-infiltrating immune cell abundance and prognosis in clear cell renal cell carcinoma. Am J Transl Res. 2021;13:11048–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang X, Pan L, Zuo Z, Li M, Zeng L, Li R, et al. LINC00842 inactivates transcription co-regulator PGC-1alpha to promote pancreatic cancer malignancy through metabolic remodelling. Nat Commun. 2021;12:3830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Andrzejewski S, Klimcakova E, Johnson RM, Tabaries S, Annis MG, McGuirk S, et al. PGC-1alpha promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab. 2017;26:778–87.e775

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Zhang Y, Guo Y, Tang H, Li M, Liu L. A novel machine learning derived RNA-binding protein gene-based score system predicts prognosis of hepatocellular carcinoma patients. PeerJ. 2021;9:e12572.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zuo Q, He J, Zhang S, Wang H, Jin G, Jin H, et al. PPARgamma Coactivator-1alpha suppresses metastasis of hepatocellular carcinoma by inhibiting Warburg effect by PPARgamma-dependent WNT/beta-Catenin/Pyruvate Dehydrogenase Kinase Isozyme 1 Axis. Hepatology. 2021;73:644–60.

    Article  CAS  PubMed  Google Scholar 

  12. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Q, Qiao L, Liao J, Liu Q, Liu P, Liu L. A novel hypoxia gene signature indicates prognosis and immune microenvironments characters in patients with hepatocellular carcinoma. J Cell Mol Med. 2021;25:3772–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deblois G, St-Pierre J, Giguère V. The PGC-1/ERR signaling axis in cancer. Oncogene. 2013;32:3483–90.

    Article  CAS  PubMed  Google Scholar 

  15. Mastropasqua F, Girolimetti G, Shoshan M. PGC1α: Friend or foe in cancer? Genes. 2018;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. LeBleu VS, O’Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. 2014;16:992–1003. 1001-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li JD, Feng QC, Qi Y, Cui G, Zhao S. PPARGC1A is upregulated and facilitates lung cancer metastasis. Exp Cell Res. 2017;359:356–60.

    Article  CAS  PubMed  Google Scholar 

  18. Kaminski L, Torrino S, Dufies M, Djabari Z, Haider R, Roustan FR, et al. PGC1alpha inhibits polyamine synthesis to suppress prostate cancer aggressiveness. Cancer Res. 2019;79:3268–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pils D, Wittinger M, Petz M, Gugerell A, Gregor W, Alfanz A, et al. BAMBI is overexpressed in ovarian cancer and co-translocates with Smads into the nucleus upon TGF-beta treatment. Gynecol Oncol. 2010;117:189–97.

    Article  CAS  PubMed  Google Scholar 

  20. Sun SW, Chen L, Zhou M, Wu JH, Meng ZJ, Han HL, et al. BAMBI regulates macrophages inducing the differentiation of Treg through the TGF-β pathway in chronic obstructive pulmonary disease. Respir Res. 2019;20:26.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khin SS, Kitazawa R, Win N, Aye TT, Mori K, Kondo T, et al. BAMBI gene is epigenetically silenced in subset of high-grade bladder cancer. Int J Cancer. 2009;125:328–38.

    Article  CAS  PubMed  Google Scholar 

  22. Yu W, Chai H. Inhibition of BAMBI reduces the viability and motility of colon cancer via activating TGF-β/Smad pathway in vitro and in vivo. Oncol Lett. 2021;21:244.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liang H, Ward WF. PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ. 2006;30:145–51.

    Article  PubMed  Google Scholar 

  24. Xu WH, Xu Y, Wang J, Wan FN, Wang HK, Cao DL, et al. Prognostic value and immune infiltration of novel signatures in clear cell renal cell carcinoma microenvironment. Aging. 2019;11:6999–7020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma W, Li T, Wu S, Li J, Wang X, Li H. LOX and ACSL5 as potential relapse markers for pancreatic cancer patients. Cancer Biol Ther. 2019;20:787–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quan J, Bode AM, Luo X. ACSL family: The regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol. 2021;909:174397.

    Article  CAS  PubMed  Google Scholar 

  27. Iseda N, Itoh S, Toshida K, Tomiyama T, Morinaga A, Shimokawa M, et al. Ferroptosis is induced by lenvatinib through fibroblast growth factor receptor-4 inhibition in hepatocellular carcinoma. Cancer Sci. 2022;113:2272–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen Y, Peng C, Chen J, Chen D, Yang B, He B, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol cancer. 2019;18:127.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li J, Zhu L, Shi Y, Liu J, Lin L, Chen X. m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. Am J Transl Res. 2019;11:6084–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Li X, Jia H, An G, Ni J. The m(6)A methyltransferase METTL3 modifies PGC-1α mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem. 2021;297:101058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Q, Qiao L, Liu Q, Kong X, Hu J, Hu W, et al. Hypoxia associated multi-omics molecular landscape of tumor tissue in patients with hepatocellular carcinoma. Aging. 2021;13:6525–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, et al. HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021;6:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A. 2016;113:E2047–2056.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu W, Gao X, Chen X, Zhao N, Sun Y, Zou Y, et al. miR-139-5p loss-mediated WTAP activation contributes to hepatocellular carcinoma progression by promoting the epithelial to mesenchymal transition. Front Oncol. 2021;11:611544.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liang L, Xu H, Dong Q, Qiu L, Lu L, Yang Q, et al. WTAP is correlated with unfavorable prognosis, tumor cell proliferation, and immune infiltration in hepatocellular carcinoma. Front Oncol. 2022;12:852000.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Takahashi M, Okada K, Ouch R, Konno T, Usui K, Suzuki H, et al. Fibronectin plays a major role in hypoxia-induced lenvatinib resistance in hepatocellular carcinoma PLC/PRF/5 cells. Pharmazie. 2021;76:594–601.

    CAS  PubMed  Google Scholar 

  37. Morales DR, Morris AD. Metformin in cancer treatment and prevention. Ann Rev Med. 2015;66:17–29.

    Article  CAS  PubMed  Google Scholar 

  38. Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract. 2018;143:409–19.

    Article  CAS  PubMed  Google Scholar 

  39. Lai HY, Tsai HH, Yen CJ, Hung LY, Yang CC, Ho CH, et al. Metformin resensitizes Sorafenib-resistant HCC cells through AMPK-dependent autophagy activation. Front Cell Dev Biol. 2020;8:596655.

    Article  PubMed  Google Scholar 

  40. Cheng L, Zhang X, Huang YZ, Zhu YL, Xu LY, Li Z, et al. Metformin exhibits antiproliferation activity in breast cancer via miR-483-3p/METTL3/m(6)A/p21 pathway. Oncogenesis. 2021;10:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nakabayashi H, Taketa K, Yamane T, Miyazaki M, Miyano K, Sato J. Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium. Gan. 1984;75:151–8.

    CAS  PubMed  Google Scholar 

  42. Alexander JJ, Bey EM, Geddes EW, Lecatsas G. Establishment of a continuously growing cell line from primary carcinoma of the liver. S Afr Med J. 1976;50:2124–8.

    CAS  PubMed  Google Scholar 

  43. Takayama T, Ukawa M, Kanazawa Y, Ando H, Shimizu T, Ishida T. Hydrodynamic tail vein injection as a simple tool for yielding extended transgene expression in solid tumors. Biol Pharm Bull. 2016;39:1555–8.

    Article  CAS  PubMed  Google Scholar 

  44. Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2:247–50.

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. Mouse models of metastasis: progress and prospects. Dis Model Mech. 2017;10:1061–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarro LM, Bradshaw CR, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med. 2017;23:1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the China Postdoctoral Science Foundation (2021M701426), Shenzhen Science and Technology Innovation Commission Foundation (JCYJ20190806160412946) and Guangdong Basic and Applied Basic Research Foundation (2021A1515220059, 2019A1515110149) and the National Natural Science Foundation of China (82002956, 8140204).

Author information

Authors and Affiliations

Authors

Contributions

QNZ, LPL designed the study. LPL supervised the study. QNZ, LFX and TW carried out the experimental work. SR collected, provided and interpreted HCC datasets used in the present study. QNZ, QL and DL performed data processing and bioinformatics analyses. QNZ wrote the manuscript. LSY, LLS and JJC helped with the animal experiments. The article was reviewed and approved for publication by all authors.

Corresponding author

Correspondence to Liping Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xiong, L., Wei, T. et al. Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma. Oncogene 42, 1509–1523 (2023). https://doi.org/10.1038/s41388-023-02665-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02665-y

This article is cited by

Search

Quick links