Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer

Abstract

The Tripartite motif-containing 28 (TRIM28) transcriptional cofactor is significantly upregulated in high-grade and metastatic prostate cancers. To study the role of TRIM28 in prostate cancer progression in vivo, we generated a genetically-engineered mouse model, combining prostate-specific inactivation of Trp53, Pten and Trim28. Trim28 inactivated NPp53T mice developed an inflammatory response and necrosis in prostate lumens. By conducting single-cell RNA sequencing, we found that NPp53T prostates had fewer luminal cells resembling proximal luminal lineage cells, which are cells with progenitor activity enriched in proximal prostates and prostate invagination tips in wild-type mice with analogous populations in human prostates. However, despite increased apoptosis and reduction of cells expressing proximal luminal cell markers, we found that NPp53T mouse prostates evolved and progressed to invasive prostate carcinoma with a shortened overall survival. Altogether, our findings suggest that TRIM28 promotes expression of proximal luminal cell markers in prostate tumor cells and provides insights into TRIM28 function in prostate tumor plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trim28 inhibition in the NPp53 mouse model of prostate cancer promotes inflammation and apoptosis.
Fig. 2: Single-cell RNA sequencing of NPp53 and NPp53T prostates suggests TRIM28 is required in proximal luminal phenotype cells.
Fig. 3: Trim28 promotes transdifferentiation to a proximal luminal phenotype.
Fig. 4: Trim28 inhibition in NPp53 prostates reduces overall survival.
Fig. 5: Long-term Trim28 inhibition promotes a pro-tumorigenic immune microenvironment.
Fig. 6: Trim28 inhibition in the castrated NPp53 mouse model produces a phenotype similar to intact mice.

Similar content being viewed by others

Data availability

Expression data from single-cell RNA sequencing have been deposited in GEO under accession number GEO: GSE199015.

Material availability

All unique reagents generated in the study are available from the lead contact with a completed material transfer agreement.

References

  1. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, et al. The role of lineage plasticity in prostate cancer therapy resistance. Clin Cancer Res. 2019.

  2. Guo W, Li L, He J, Liu Z, Han M, Li F, et al. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet. 2020;52:908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karthaus WR, Hofree M, Choi D, Linton EL, Turkekul M, Bejnood A, et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science. 2020;368:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mevel R, Steiner I, Mason S, Galbraith LC, Patel R, Fadlullah MZ, et al. RUNX1 marks a luminal castration-resistant lineage established at the onset of prostate development. eLife. 2020;9:e60225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crowley L, Cambuli F, Aparicio L, Shibata M, Robinson BD, Xuan S, et al. A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. eLife. 2020;9:e59465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun. 2018;9:5007.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shibata M, Blauvelt KE, Liem KF Jr, Garcia-Garcia MJ. TRIM28 is required by the mouse KRAB domain protein ZFP568 to control convergent extension and morphogenesis of extra-embryonic tissues. Development. 2011;138:5333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alexander KA, Wang X, Shibata M, Clark AG, Garcia-Garcia MJ. TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. Cell Rep. 2015;13:1194–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science. 2012;335:1499–502.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008;15:547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oleksiewicz U, Gladych M, Raman AT, Heyn H, Mereu E, Chlebanowska P, et al. TRIM28 and Interacting KRAB-ZNFs Control Self-Renewal of Human Pluripotent Stem Cells through Epigenetic Repression of Pro-differentiation Genes. Stem cell Rep. 2017;9:2065–80.

    Article  CAS  Google Scholar 

  12. Barde I, Rauwel B, Marin-Florez RM, Corsinotti A, Laurenti E, Verp S, et al. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science. 2013;340:350–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh K, Cassano M, Planet E, Sebastian S, Jang SM, Sohi G, et al. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. Genes Dev. 2015;29:513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gehrmann U, Burbage M, Zueva E, Goudot C, Esnault C, Ye M, et al. Critical role for TRIM28 and HP1beta/gamma in the epigenetic control of T cell metabolic reprograming and effector differentiation. Proc Natl Acad Sci USA. 2019;116:25839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bacon CW, Challa A, Hyder U, Shukla A, Borkar AN, Bayo J, et al. KAP1 Is a Chromatin Reader that Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Mol Cell. 2020;78:1133–51.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Czerwinska P, Shah PK, Tomczak K, Klimczak M, Mazurek S, Sozanska B, et al. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development. Oncotarget. 2017;8:863–82.

    Article  PubMed  Google Scholar 

  17. Addison JB, Koontz C, Fugett JH, Creighton CJ, Chen D, Farrugia MK, et al. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res. 2015;75:344–55.

    Article  CAS  PubMed  Google Scholar 

  18. Hao L, Leng J, Xiao R, Kingsley T, Li X, Tu Z, et al. Bioinformatics analysis of the prognostic value of Tripartite Motif 28 in breast cancer. Oncol Lett. 2017;13:2670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Tilborgh N, Spans L, Helsen C, Clinckemalie L, Dubois V, Lerut E, et al. The transcription intermediary factor 1beta coactivates the androgen receptor. J Endocrinol Investig. 2013;36:699–706.

    Google Scholar 

  20. Stelloo S, Nevedomskaya E, Kim Y, Hoekman L, Bleijerveld OB, Mirza T, et al. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene. 2018;37:313–22.

    Article  CAS  PubMed  Google Scholar 

  21. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov. 2017;7:736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reimers MA, Slane KE, Pachynski RK. Immunotherapy in Metastatic Castration-Resistant Prostate Cancer: Past and Future Strategies for Optimization. Curr Urol Rep. 2019;20:64.

    Article  PubMed  Google Scholar 

  24. Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Investig N Drugs. 2013;31:760–8.

    Article  CAS  Google Scholar 

  25. Di Mitri D, Mirenda M, Vasilevska J, Calcinotto A, Delaleu N, Revandkar A, et al. Re-education of Tumor-Associated Macrophages by CXCR2 Blockade Drives Senescence and Tumor Inhibition in Advanced Prostate Cancer. Cell Rep. 2019;28:2156–68e.55.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM, et al. Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA. 2002;99:2884–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell. 2003;4:223–38.

    Article  CAS  PubMed  Google Scholar 

  28. Pletcher A, Shibata M. Prostate organogenesis. Development. 2022;149:dev200394. https://doi.org/10.1242/dev.200394. Epub 2022 Jun 21.

  29. Crowley L, Shen MM. Heterogeneity and complexity of the prostate epithelium: New findings from single-cell RNA sequencing studies. Cancer Lett. 2022;525:108–14.

    Article  CAS  PubMed  Google Scholar 

  30. Abu El Maaty MA, Terzic J, Keime C, Rovito D, Lutzing R, Yanushko D, et al. Hypoxia-mediated stabilization of HIF1A in prostatic intraepithelial neoplasia promotes cell plasticity and malignant progression. Sci Adv. 2022;8:eabo2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ittmann M, Huang J, Radaelli E, Martin P, Signoretti S, Sullivan R, et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 2013;73:2718–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu R, Gires O, Zhu L, Liu J, Li J, Yang H, et al. TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun. 2019;10:2863.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–7.

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal S, Hynes PG, Tillman HS, Lake R, Abou-Kheir WG, Fang L, et al. Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors. Cell Rep. 2015;13:2147–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol. 2002;168:2618–25.

    Article  CAS  PubMed  Google Scholar 

  36. Maine CJ, Teijaro JR, Marquardt K, Sherman LA. PTPN22 contributes to exhaustion of T lymphocytes during chronic viral infection. Proc Natl Acad Sci USA. 2016;113:E7231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ecco G, Cassano M, Kauzlaric A, Duc J, Coluccio A, Offner S, et al. Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. Dev Cell. 2016;36:611–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nicetto D, Donahue G, Jain T, Peng T, Sidoli S, Sheng LH. et al. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019;363:294–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chua CW, Shibata M, Lei M, Toivanen R, Barlow LJ, Bergren SK, et al. Single luminal epithelial progenitors can generate prostate organoids in culture. Nat Cell Biol. 2014;16:951–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zarif JC, Baena-Del Valle JA, Hicks JL, Heaphy CM, Vidal I, Luo J, et al. Mannose Receptor-positive Macrophage Infiltration Correlates with Prostate Cancer Onset and Metastatic Castration-resistant Disease. Eur Urol Oncol. 2019;2:429–36.

    Article  PubMed  Google Scholar 

  41. Yang Y, Lu H, Chen C, Lyu Y, Cole RN, Semenza GL. HIF-1 Interacts with TRIM28 and DNA-PK to release paused RNA polymerase II and activate target gene transcription in response to hypoxia. Nat Commun. 2022;13:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koeneman KS, Yeung F, Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 1999;39:246–61.

    Article  CAS  PubMed  Google Scholar 

  43. Desbois C, Hogue DA, Karsenty G. The mouse osteocalcin gene cluster contains three genes with two separate spatial and temporal patterns of expression. J Biol Chem. 1994;269:1183–90.

    Article  CAS  PubMed  Google Scholar 

  44. Lee AK, Pan D, Bao X, Hu M, Li F, Li CY. Endogenous Retrovirus Activation as a Key Mechanism of Anti-Tumor Immune Response in Radiotherapy. Radiat Res. 2020;193:305–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010;463:237–40.

    Article  CAS  PubMed  Google Scholar 

  46. Tie CH, Fernandes L, Conde L, Robbez-Masson L, Sumner RP, Peacock T, et al. KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control. EMBO Rep. 2018;19:e45000.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell. 2015;162:974–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang SM, Cai WL, Liu X, Thakral D, Luo J, Chan LH, et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature. 2021;598:682–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Baratchian M, Tiwari R, Khalighi S, Chakravarthy A, Yuan W, Berk M, et al. H3K9 methylation drives resistance to androgen receptor-antagonist therapy in prostate cancer. Proc Natl Acad Sci USA. 2022;119:e2114324119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Morel KL, Sheahan AV, Burkhart DL, Baca SC, Boufaied N, Liu Y, et al. EZH2 inhibition activates a dsRNA-STING-interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nat Cancer. 2021;2:444–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature. 2021;595:309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, et al. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep. 2018;25:3006–20.e07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature. 2009;461:495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cammas F, Mark M, Dolle P, Dierich A, Chambon P, Losson R. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development. 2000;127:2955–63.

    Article  CAS  PubMed  Google Scholar 

  55. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  56. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA. 2019;116:11428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med. 2016;22:369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Shibata lab members and Kate Chiappinelli for comments on the paper, Michael Shen for mice, Chuan-Yuan Li for plasmids, Hunain Khawaja for assistance with animal breeding and colony maintenance, Gregory Cresswell and the GW Flow Cytometry Core, Keith Crandall, Caitlin Loeffler and the GW Genomics Core, the GW Nanofabrication and Imaging Center, the McCormick Genomic & Proteomic Center and the GW SMHS Writing Institute. This work was supported by the National Institutes of Health NCI grant R00CA194287 to MS.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, ASY, ECW, AP, AHelfand, TMN, MS; Single-cell RNA sequencing analysis, HI, AHorvath, MS; pathology analysis, PSL; writing—original draft, ASY, ECW, MS; writing—review and editing, all authors; conceptualization, funding acquisition, supervision, MS.

Corresponding author

Correspondence to Maho Shibata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yende, A.S., Williams, E.C., Pletcher, A. et al. TRIM28 promotes luminal cell plasticity in a mouse model of prostate cancer. Oncogene 42, 1347–1359 (2023). https://doi.org/10.1038/s41388-023-02655-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02655-0

Search

Quick links