Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC6-G3BP2 promotes lysosomal-TSC2 and suppresses mTORC1 under ETV4 targeting-induced low-lactate stress in non-small cell lung cancer

Abstract

TSC-mTORC1 inhibition-mediated translational reprogramming is a major adaptation mechanism upon many stresses, such as low-oxygen, -ATP, and -amino acids. But how cancer cells hijack the adaptive pathway to survive under low-lactate stress when targeting glycolysis-related signaling remains uncertain. ETV4 is an oncogenic transcription factor frequently dysregulated in human cancer. We previously found that ETV4 is associated with tumor progression and poor prognosis in non-small cell lung cancer (NSCLC). In this study, we report that ETV4 controls HK1 expression and glycolysis-lactate production to activate mTORC1 by relieving TSC2 repression of Rheb in NSCLC cells. Targeting ETV4-induced low-lactate stress is an important input for TSC2 to inhibit mTORC1 and global protein synthesis, while the core stress granule components G3BP2 and HDAC6 are selectively translated. Mechanistically, G3BP2 recruits lysosomal-TSC2 to suppress mTORC1. HDAC6 deacetylates TSC2 to sustain protein stability and associates with G3BP2 to facilitate more recruiting of TSC2 to inactivate mTORC1. In addition, the microtubule retrograde transport activity of HDAC6 drives the aggregate-like perinuclear-mTOR distribution paralleled by lower mTORC1 activity under stress. Thus, HDAC6-G3BP2 is the key complex that promotes lysosomal-TSC2 and suppresses mTORC1 when targeting ETV4, which might represent a critical adaptive mechanism for cell survival under low-lactate challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ETV4 regulates glycolytic enzyme HK1 expression to control aerobic glycolysis in NSCLC cells.
Fig. 2: ETV4-lactate regulates TSC2-Rheb-dependent mTORC1 activation as well as mTOR distribution in NSCLC cells.
Fig. 3: ETV4 knockdown induces low-lactate stress leading to downregulation of total protein synthesis in NSCLC cells.
Fig. 4: ETV4 knockdown-induced low-lactate relieves G3BP2 repression in NSCLC cells.
Fig. 5: G3BP2 inhibits mTORC1 activity through upregulation of TSC2-Rheb interaction in si-ETV4 NSCLC cells.
Fig. 6: HDAC6 induces perinuclear-mTOR distribution and the lower mTORC1 activity in si-ETV4 NSCLC cells.
Fig. 7: HDAC6 deacetylates TSC2, leading to modulation of protein stability and mTORC1 activity.
Fig. 8: HDAC6 associates with G3BP2 to facilitate more recruiting of TSC2 to inactivate mTORC1 in si-ETV4 NSCLC cells.

Similar content being viewed by others

Data availability

The Microarray data have been uploaded to the NCBI Gene Expression Omnibus (GEO) database under accession numbers GSE137445. All other data supporting the findings of this study are available from the corresponding author upon reasonable request. The figshare DOI is https://doi.org/10.6084/m9.figshare.21788945.

References

  1. Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995;312:163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holcik M, Sonenberg N. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol. 2005;6:318–27.

    Article  CAS  PubMed  Google Scholar 

  3. Roux PP, Topisirovic I. Signaling pathways involved in the regulation of mRNA translation. Mol Cell Biol. 2018;38:e00070–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Costa-Mattioli M, Walter P. The integrated stress response: from mechanism to disease. Science. 2020;368:eaat53145.

    Article  Google Scholar 

  5. Dalle Pezze P, Sonntag AG, Thien A, Prentzell MT, Gödel M, Fischer S, et al. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal. 2012;5:ra25.

    PubMed  Google Scholar 

  6. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21:183–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell. 2012;47:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell. 2014;156:771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alam U, Kennedy D. Rasputin a decade on and more promiscuous than ever? A review of G3BPs. Biochim Biophys Acta Mol Cell Res. 2019;1866:360–70.

    Article  CAS  PubMed  Google Scholar 

  11. Kennedy D, French J, Guitard E, Ru K, Tocque B, Mattick J. Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP (120) binding studies. J Cell Biochem. 2001;84:173–87.

    Article  CAS  PubMed  Google Scholar 

  12. Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020;181:325–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Prentzell MT, Rehbein U, Cadena Sandoval M, De Meulemeester AS, Baumeister R, Brohée L, et al. G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell. 2021;184:655–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007;21:3381–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Shin D, Kwon SH. Histone deacetylase 6 plays a role as a distinct regulator of diverse cellular processes. FEBS J. 2013;280:775–93.

    CAS  PubMed  Google Scholar 

  16. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, et al. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–8.

    Article  CAS  PubMed  Google Scholar 

  17. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell. 2007;25:151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gal J, Chen J, Na DY, Tichacek L, Barnett KR, Zhu H. The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress granule dynamics. Mol Cell Biol. 2019;39:e00052–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003;115:727–38.

    Article  CAS  PubMed  Google Scholar 

  20. Magupalli VG, Negro R, Tian Y, Hauenstein AV, Di Caprio G, Skillern W, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science. 2020;369:eaas8995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharif T, Martell E, Dai C, Ghassemi-Rad MS, Hanes MR, Murphy PJ, et al. HDAC6 differentially regulates autophagy in stem-like versus differentiated cancer cells. Autophagy. 2019;15:686–706.

    Article  CAS  PubMed  Google Scholar 

  22. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harb Perspect Med. 2015;5:a006098.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Byun JK, Park M, Yun JW, Lee J, Kim JS, Cho SJ, et al. Oncogenic KRAS signaling activates mTORC1 through COUP-TFII-mediated lactate production. EMBO Rep. 2019;20:e47451.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benjamin D, Hall MN. Lactate jump-starts mTORC1 in cancer cells. EMBO Rep. 2019;20:e48302.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, et al. A compendium of mutational cancer driver genes. Nat Rev Cancer. 2020;20:555–72.

    Article  PubMed  Google Scholar 

  26. Wang Y, Ding X, Liu B, Li M, Chang Y, Shen H, et al. ETV4 overexpression promotes progression of non-small cell lung cancer by upregulating PXN and MMP1 transcriptionally. Mol Carcinog. 2020;59:73–86.

    Article  PubMed  Google Scholar 

  27. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, et al. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol. 2011;13:453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia R, Bonifacino JS. Lysosome positioning influences mTORC2 and AKT signaling. Mol Cell. 2019;75:26–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mavrothalassitis G, Ghysdael J. Proteins of the ETS family with transcriptional repressor activity. Oncogene. 2000;19:6524–32.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Yokoyama S, Herriges JC, Zhang Z, Young RE, Verheyden JM, et al. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors. Proc Natl Acad Sci USA. 2016;113:7557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dumortier M, Ladam F, Damour I, Vacher S, Bièche I, Marchand N, et al. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis. Breast Cancer Res. 2018;20:73.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim E, Kim D, Lee JS, Yoe J, Park J, Kim CJ, et al. Capicua suppresses hepatocellular carcinoma progression by controlling the ETV4-MMP1 axis. Hepatology. 2018;67:2287–301.

    Article  CAS  PubMed  Google Scholar 

  33. Suriben R, Kaihara KA, Paolino M, Reichelt M, Kummerfeld SK, Modrusan Z, et al. β-Cell insulin secretion requires the ubiquitin ligase COP1. Cell. 2015;163:1457–67.

    Article  CAS  PubMed  Google Scholar 

  34. Okimoto RA, Breitenbuecher F, Olivas VR, Wu W, Gini B, Hofree M, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet. 2017;49:87–96.

    Article  CAS  PubMed  Google Scholar 

  35. Liao S, Davoli T, Leng Y, Li MZ, Xu Q, Elledge SJ. A genetic interaction analysis identifies cancer drivers that modify EGFR dependency. Genes Dev. 2017;31:184–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma P, Jin X, Fan Z, Wang Z, Yue S, Wu C, et al. Super-enhancer receives signals from the extracellular matrix to induce PD-L1-mediated immune evasion via integrin/BRAF/TAK1/ERK/ETV4 signaling. Cancer Biol Med. 2021;19:669–84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu T, Zheng J, Zhuo W, Pan P, Li M, Zhang W, et al. ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling. Cell Death Discov. 2021;7:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412:179–90.

    Article  CAS  PubMed  Google Scholar 

  39. García-Aguilar A, Guillén C, Nellist M, Bartolomé A, Benito M. TSC2 N-terminal lysine acetylation status affects to its stability modulating mTORC1 signaling and autophagy. Biochim Biophys Acta. 2016;1863:2658–67.

    Article  PubMed  Google Scholar 

  40. Rabanal-Ruiz Y, Byron A, Wirth A, Madsen R, Sedlackova L, Hewitt G, et al. mTORC1 activity is supported by spatial association with focal adhesions. J Cell Biol. 2021;220:e202004010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carroll B. Spatial regulation of mTORC1 signalling: beyond the Rag GTPases. Semin Cell Dev Biol. 2020;107:103–11.

    Article  CAS  PubMed  Google Scholar 

  42. Dowling CM, Hollinshead KER, Di Grande A, Pritchard J, Zhang H, Dillon ET, et al. Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer. Sci Adv. 2021;7:eabc4897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan X, Tian R, Sun J, Zhao Y, Liu B, Su J, et al. Sorafenib-induced autophagy promotes glycolysis by upregulating the p62/HDAC6/HSP90 axis in hepatocellular carcinoma cells. Front Pharmacol. 2022;12:788667.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol. 2022;45:779–829.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants 81572275 from the National Natural Science Foundation of China, Grants U20A20369 from the National Natural Science Foundation of China, Grants H2020206234 and H2020206374 from the Natural Science Foundation of Hebei province, China, and Grants WZYCZY202003 from Hebei Provincial Department of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Contributions

LX designed the study and wrote the paper. BL developed the method and performed research. JZ, XM, FL, HC, DY, and MG helped to perform the in vitro assays and FCM analysis.. SMX participated in writing and revising the manuscript. ML contributed to the data analysis. HS and XZ reviewed and edited the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Lingxiao Xing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Zhang, J., Meng, X. et al. HDAC6-G3BP2 promotes lysosomal-TSC2 and suppresses mTORC1 under ETV4 targeting-induced low-lactate stress in non-small cell lung cancer. Oncogene 42, 1181–1195 (2023). https://doi.org/10.1038/s41388-023-02641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02641-6

Search

Quick links