Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of CD8+ T cells infiltration and immunotherapy by circMGA/HNRNPL complex in bladder cancer

Abstract

The limited success of immunotherapies targeting immune checkpoint inhibitors is largely ascribed to the lack of infiltrating CD8+ T lymphocytes. Circular RNAs (circRNAs) are a novel type of prevalent noncoding RNA that have been implicated in tumorigenesis and progression, while their roles in modulating CD8+ T cells infiltration and immunotherapy in bladder cancer have not yet been investigated. Herein, we uncover circMGA as a tumor-suppressing circRNA triggering CD8+ T cells chemoattraction and boosting the immunotherapy efficacy. Mechanistically, circMGA functions to stabilize CCL5 mRNA by interacting with HNRNPL. In turn, HNRNPL increases the stability of circMGA, forming a feedback loop that enhances the function of circMGA/HNRNPL complex. Intriguingly, therapeutic synergy between circMGA and anti-PD-1 could significantly suppress xenograft bladder cancer growth. Taken together, the results demonstrate that circMGA/HNRNPL complex may be targetable for cancer immunotherapy and the study advances our understanding of the physiological roles of circRNAs in antitumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and distribution of circMGA.
Fig. 2: CircMGA increases the accumulation of CCL5.
Fig. 3: CircMGA interacts with HNRNPL protein in bladder cancer.
Fig. 4: HNRNPL enhances the stability of circMGA and CCL5.
Fig. 5: CircMGA promotes the stability of CCL5 mRNA through HNRNPL.
Fig. 6: CircMGA/HNRNPL complex mediates recruitment of CD8+ T cells.
Fig. 7: Biological implications of circMGA in bladder cancer.
Fig. 8: Schematic model for the mechanisms of circMGA/HNRNPL complex in hindering bladder cancer progression.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The mRNA expression profile data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) database with the number of GSE182310 (token: qjmluawubtupvur).

References

  1. Lenis A, Lec P, Chamie K, Mshs M. Bladder cancer: a review. JAMA. 2020;324:1980–91.

    Article  CAS  PubMed  Google Scholar 

  2. Patel V, Oh W, Galsky M. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70:404–23.

    Article  PubMed  Google Scholar 

  3. Witjes J, Bruins H, Cathomas R, Compérat E, Cowan N, Gakis G, et al. European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol. 2021;79:82–104.

    Article  CAS  PubMed  Google Scholar 

  4. Murciano-Goroff Y, Warner A, Wolchok J. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30:507–19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Anandappa A, Wu C, Ott P. Directing traffic: how to effectively drive t cells into tumors. Cancer Discov. 2020;10:185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sharma P, Shen Y, Wen S, Yamada S, Jungbluth A, Gnjatic S, et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci USA. 2007;104:3967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van der Woude L, Gorris M, Halilovic A, Figdor C, de Vries I. Migrating into the tumor: a roadmap for T cells. Trends Cancer. 2017;3:797–808.

    Article  PubMed  Google Scholar 

  8. Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C, Mami-Chouaib F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 2012;72:6325–32.

    Article  CAS  PubMed  Google Scholar 

  9. Mulé J, Custer M, Averbook B, Yang J, Weber J, Goeddel D, et al. RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations. Hum Gene Ther. 1996;7:1545–53.

    Article  PubMed  Google Scholar 

  10. Goodall G, Wickramasinghe V. RNA in cancer. Nat Rev Cancer. 2021;21:22–36.

    Article  CAS  PubMed  Google Scholar 

  11. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019;176:869–881.e813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang C, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep. 2017;18:1646–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie F, Li Y, Wang M, Huang C, Tao D, Zheng F, et al. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer. 2018;17:144.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Xiao X, Wei W, Huang C, Wang M, Wang L, et al. CircLIFR synergizes with MSH2 to attenuate chemoresistance via MutSα/ATM-p73 axis in bladder cancer. Mol Cancer. 2021;20:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei W, Sun J, Zhang H, Xiao X, Huang C, Wang L, et al. Circ0008399 Interaction with WTAP promotes assembly and activity of the mA methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res. 2021;81:6142–56.

    Article  CAS  PubMed  Google Scholar 

  16. Jia L, Wang Y, Wang C. circFAT1 promotes cancer stemness and immune evasion by promoting STAT3 activation. Adv Sci. 2021;8:2003376.

    Article  CAS  Google Scholar 

  17. Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021;12:295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piñol-Roma S, Swanson MS, Gall JG, Dreyfuss G. A novel heterogeneous nuclear RNP protein with a unique distribution on nascent transcripts. J Cell Biol. 1989;109:2575–87.

    Article  PubMed  Google Scholar 

  19. Shih S, Claffey K. Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem. 1999;274:1359–65.

    Article  CAS  PubMed  Google Scholar 

  20. Söderberg M, Raffalli-Mathieu F, Lang MA. Identification of a regulatory cis-element within the 3’-untranslated region of the murine inducible nitric oxide synthase (iNOS) mRNA; interaction with heterogeneous nuclear ribonucleoproteins I and L and role in the iNOS gene expression. Mol Immunol. 2007;44:434–42.

    Article  PubMed  Google Scholar 

  21. Goehe RW, Shultz JC, Murudkar C, Usanovic S, Lamour NF, Massey DH, et al. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. J Clin Invest. 2010;120:3923–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji J, Xu R, Ding K, Bao G, Zhang X, Huang B, et al. SChLAP1Long noncoding RNA forms a growth-Promoting Complex with HNRNPL in human glioblastoma through stabilization of ACTN4 and activation of NF-κB Signaling. Clin Cancer Res. 2019;25:6868–81.

    Article  CAS  PubMed  Google Scholar 

  23. Ji M, Zhao Z, Li Y, Xu P, Shi J, Li Z, et al. FBXO16-mediated hnRNPL ubiquitination and degradation plays a tumor suppressor role in ovarian cancer. Cell Death Dis. 2021;12:758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20:1666–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Zeng F, Liu Y, Zhao Y, Lv H, Niu L, et al. Crystal structures and RNA-binding properties of the RNA recognition motifs of heterogeneous nuclear ribonucleoprotein L: insights into its roles in alternative splicing regulation. J Biol Chem. 2013;288:22636–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia G. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics. 2013;29:2928–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hamilton B, Nichols R, Tsukamoto H, Boado R, Pardridge W, Rigby W. hnRNP A2 and hnRNP L bind the 3’UTR of glucose transporter 1 mRNA and exist as a complex in vivo. Biochem Biophys Res Commun. 1999;261:646–51.

    Article  CAS  PubMed  Google Scholar 

  29. Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell. 2019;35:885–900.e810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang L, Saci A, Szabo PM, Chasalow SD, Castillo-Martin M, Domingo-Domenech J, et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat Commun. 2018;9:3503.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Galsky MD, Arija J, Bamias A, Davis ID, De Santis M, Kikuchi E, et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395:1547–57.

    Article  CAS  PubMed  Google Scholar 

  32. Waldman A, Fritz J, Lenardo M. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li W, Liu J, Chen M, Xu J, Zhu D. Circular RNA in cancer development and immune regulation. J Cell Mol Med. 2020;00:1–14.

    Google Scholar 

  34. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer. 2019;18:6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu C, Li X, Nan F, Jiang S, Gao X, Guo SK, et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 2019;177:865–880.e821.

    Article  CAS  PubMed  Google Scholar 

  36. Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK, et al. Endoribonucleolytic cleavage of mA-containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74:494–507.e498.

    Article  CAS  PubMed  Google Scholar 

  37. Nagarsheth N, Wicha M, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seo W, Shimizu K, Kojo S, Okeke A, Kohwi-Shigematsu T, Fujii SI, et al. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat Commun. 2020;11:1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Serrels A, Lund T, Serrels B, Byron A, McPherson RC, von Kriegsheim A, et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell 2015;163:160–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Powles T, Csőszi T, Özgüroğlu M, Matsubara N, Géczi L, Cheng SY, et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:931–45.

    Article  CAS  PubMed  Google Scholar 

  41. Hegde P, Chen D. Top 10 challenges in cancer immunotherapy. Immunity 2020;52:17–35.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang G, Wu AD, Huang C, Gu J, Zhang L, Huang H, et al. Isorhapontigenin (ISO) inhibits invasive bladder cancer formation in vivo and human bladder cancer invasion in vitro by targeting STAT1/FOXO1 axis. Cancer Prev Res. 2016;9:567–80.

    Article  CAS  Google Scholar 

  43. Cook K, Kazan H, Zuberi K, Morris Q, Hughes T. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 2011;39:D301–8.

    Article  CAS  PubMed  Google Scholar 

  44. Huang XY, Zhang PF, Wei CY, Peng R, Lu JC, Gao C, et al. Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Mol Cancer. 2020;19:92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Urology of the Union Hospital of Tongji Medical College of Huazhong University of Science and Technology (Wuhan, China), the patients, and their families for donating bladder cancer tissues and paired adjacent normal tissues. We would also like to thank Yunxue Li for correcting spelling and grammatical errors in our manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81974396, 81773282, 82072840, 82102734 and 81902593), the Natural Science Foundation of Hubei province (2022CFB165) and Wuhan Science and Technology Plan Application Foundation Frontier Project (2020020601012247).

Author information

Authors and Affiliations

Authors

Contributions

X Zhang, G Jiang and H Yang were the overall study principal investigators who conceived and designed the study. J Sun, H Zhang, and W Wei performed experiments, analyzed data, and drafted the manuscript. X Xiao, C Huang, and L Wang were responsible for recruitment of bladder cancer subjects and collection of clinical information and biological specimens. H Zhong, Y Jiang, F Zheng analyzed bioinformatics data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hongmei Yang, Guosong Jiang or Xiaoping Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Zhang, H., Wei, W. et al. Regulation of CD8+ T cells infiltration and immunotherapy by circMGA/HNRNPL complex in bladder cancer. Oncogene 42, 1247–1262 (2023). https://doi.org/10.1038/s41388-023-02637-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02637-2

This article is cited by

Search

Quick links