Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nutrient transporters: connecting cancer metabolism to therapeutic opportunities

Abstract

Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolite transporters and their functions.
Fig. 2: Inhibitors of metabolite transporters.
Fig. 3: Strategies for identifying and exploiting transporters required by cancer.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  3. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  4. Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13:572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maddocks ODK, Athineos D, Cheung EC, Lee P, Zhang T, van den Broek NJF, et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544:372–6.

    Article  CAS  PubMed  Google Scholar 

  10. Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572:397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature. 2020;585:277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Banh RS, Biancur DE, Yamamoto K, Sohn ASW, Walters B, Kuljanin M, et al. Neurons release serine to support mRNA translation in pancreatic cancer. Cell. 2020;183:1202–18.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Muthusamy T, Cordes T, Handzlik MK, You L, Lim EW, Gengatharan J, et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature. 2020;586:790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nwosu ZC, Piorońska W, Battello N, Zimmer AD, Dewidar B, Han M, et al. Severe metabolic alterations in liver cancer lead to ERK pathway activation and drug resistance. EBioMedicine. 2020;54:102699.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martinez-Outschoorn UE, Whitaker-Menezes D, Pavlides S, Chiavarina B, Bonuccelli G, Trimmer C, et al. The autophagic tumor stroma model of cancer or “battery-operated tumor growth”: a simple solution to the autophagy paradox. Cell Cycle. 2010;9:4297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W, Grabocka E, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75:544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reckzeh ES, Waldmann H. Small‐molecule inhibition of glucose transporters GLUT‐1–4. ChemBioChem. 2020;21:45–52.

    Article  CAS  PubMed  Google Scholar 

  19. Adams DJ, Ito D, Rees MG, Seashore-Ludlow B, Puyang X, Ramos AH, et al. NAMPT Is the cellular target of STF-31-like small-molecule probes. ACS Chem Biol. 2014;9:2247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo Z, Cheng Z, Wang J, Liu W, Peng H, Wang Y, et al. Discovery of a potent GLUT inhibitor from a library of rapafucins by using 3D microarrays. Angew Chem Int Ed. 2019;58:17158–62.

    Article  CAS  Google Scholar 

  21. Shi Y, Liu S, Ahmad S, Gao Q. Targeting key transporters in tumor glycolysis as a novel anticancer strategy. CTMC. 2018;18:454–66.

    Article  CAS  Google Scholar 

  22. Gonzalez PS, O’Prey J, Cardaci S, Barthet VJA, Sakamaki J, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature 2018;563:719–23.

    Article  CAS  PubMed  Google Scholar 

  23. Nwosu ZC, Megger DA, Hammad S, Sitek B, Roessler S, Ebert MP, et al. Identification of the consistently altered metabolic targets in human hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 2017;4:303–323. e1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim YH, Jeong DC, Pak K, Han ME, Kim JY, Liangwen L, et al. SLC2A2 (GLUT2) as a novel prognostic factor for hepatocellular carcinoma. Oncotarget 2017;8:68381–92.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Byrne FL, Olzomer EM, Brink R, Hoehn KL. Knockout of glucose transporter GLUT6 has minimal effects on whole body metabolic physiology in mice. Am J Physiol-Endocrinol Metab. 2018;315:E286–93.

    Article  CAS  PubMed  Google Scholar 

  26. Scafoglio CR, Villegas B, Abdelhady G, Bailey ST, Liu J, Shirali AS, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med 2018;10:eaat5933.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci USA 2015;112:E4111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, et al. Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential. Cancer Cell. 2016;30:779–91.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen WL, Jin X, Wang M, Liu D, Luo Q, Tian H, et al. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight. 2020;5:e131596.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carreño DV, Corro NB, Cerda-Infante JF, Echeverría CE, Asencio-Barría CA, Torres-Estay VA, et al. Dietary fructose promotes prostate cancer growth. Cancer Res. 2021;81:2824–32.

    Article  PubMed  Google Scholar 

  31. Taylor SR, Ramsamooj S, Liang RJ, Katti A, Pozovskiy R, Vasan N, et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature. 2021;597:263–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goncalves MD, Lu C, Tutnauer J, Hartman TE, Hwang SK, Murphy CJ, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science. 2019;363:1345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shen Z, Li Z, Liu Y, Li Y, Feng X, Zhan Y, et al. GLUT5-KHK axis-mediated fructose metabolism drives proliferation and chemotherapy resistance of colorectal cancer. Cancer Lett. 2022;534:215617.

    Article  CAS  PubMed  Google Scholar 

  34. Lin M, Fang Y, Li Z, Li Y, Feng X, Zhan Y, et al. S100P contributes to promoter demethylation and transcriptional activation of SLC2A5 to promote metastasis in colorectal cancer. Br J Cancer. 2021;125:734–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. George Thompson AM, Ursu O, Babkin P, Iancu CV, Whang A, Oprea TI, et al. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation. Sci Rep. 2016;6:24240.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–91.

    Article  CAS  PubMed  Google Scholar 

  37. Roef MJ, de Meer K, Kalhan SC, Straver H, Berger R, Reijngoud DJ. Gluconeogenesis in humans with induced hyperlactatemia during low-intensity exercise. Am J Physiol Endocrinol Metab. 2003;284:E1162–71.

    Article  CAS  PubMed  Google Scholar 

  38. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, et al. Lactate metabolism in human lung tumors. Cell 2017;171:358–371. e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Granlund KL, Tee SS, Vargas HA, Lyashchenko SK, Reznik E, Fine S, et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab. 2020;31:105–114. e3.

    Article  CAS  PubMed  Google Scholar 

  40. Choi SYC, Xue H, Wu R, Fazli L, Lin D, Collins CC, et al. The MCT4 gene: a novel, potential target for therapy of advanced prostate cancer. Clin Cancer Res. 2016;22:2721–33.

    Article  CAS  PubMed  Google Scholar 

  41. Payen VL, Hsu MY, Rädecke KS, Wyart E, Vazeille T, Bouzin C, et al. Monocarboxylate transporter MCT1 promotes tumor metastasis independently of its activity as a lactate transporter. Cancer Res. 2017;77:5591–601.

    Article  CAS  PubMed  Google Scholar 

  42. Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 2020;577:115–20.

    Article  CAS  PubMed  Google Scholar 

  43. CRUK Rosetta Grand Challenge Consortium, Najumudeen AK, Ceteci F, Fey SK, Hamm G, Steven RT, et al. The amino acid transporter SLC7A5 is required for efficient growth of KRAS-mutant colorectal cancer. Nat Genet. 2021;53:16–26.

    Article  Google Scholar 

  44. Bröer A, Gauthier-Coles G, Rahimi F, van Geldermalsen M, Dorsch D, Wegener A, et al. Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells. J Biol Chem. 2019;294:4012–26.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST, et al. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med. 2018;24:194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Z, Liu R, Shuai Y, Huang Y, Jin R, Wang X, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122:82–93.

    Article  CAS  PubMed  Google Scholar 

  47. Wang VMY, Ferreira RMM, Almagro J, Evan T, Legrave N, Zaw Thin M, et al. CD9 identifies pancreatic cancer stem cells and modulates glutamine metabolism to fuel tumour growth. Nat Cell Biol. 2019;21:1425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ni F, Yu WM, Li Z, Graham DK, Jin L, Kang S, et al. Critical role of ASCT2-mediated amino acid metabolism in promoting leukaemia development and progression. Nat Metab. 2019;1:390–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ogiwara H, Takahashi K, Sasaki M, Kuroda T, Yoshida H, Watanabe R, et al. Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers. Cancer Cell. 2019;35:177–190. e8

    Article  CAS  PubMed  Google Scholar 

  51. Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee HJ, Purohit V, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020;368:85–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cramer SL, Saha A, Liu J, Tadi S, Tiziani S, Yan W, et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med. 2017;23:120–7.

    Article  CAS  PubMed  Google Scholar 

  53. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, et al. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife. 2014;3:e02523.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zheng J, Sato M, Mishima E, Sato H, Proneth B, Conrad M. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 2021;12:698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu J, Berisa M, Schwörer S, Qin W, Cross JR, Thompson CB. Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab. 2019;30:865–876. e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR, et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science. 2016;353:1161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang W, Zou W. Amino acids and their transporters in T cell immunity and cancer therapy. Molecular Cell. 2020;80:384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saito Y, Li L, Coyaud E, Luna A, Sander C, Raught B, et al. LLGL2 rescues nutrient stress by promoting leucine uptake in ER+ breast cancer. Nature. 2019;569:275–9.

    Article  CAS  PubMed  Google Scholar 

  59. Cormerais Y, Giuliano S, LeFloch R, Front B, Durivault J, Tambutte E, et al. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Res. 2016;76:4481–92.

    Article  CAS  PubMed  Google Scholar 

  60. Maimaiti M, Sakamoto S, Yamada Y, Sugiura M, Rii J, Takeuchi N, et al. Expression of L-type amino acid transporter 1 as a molecular target for prognostic and therapeutic indicators in bladder carcinoma. Sci Rep. 2020;10:1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162:540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554:378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, et al. Cationic amino acid transporter-1-mediated arginine uptake is essential for chronic lymphocytic leukemia cell proliferation and viability. Front Oncol. 2019;9:1268.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lowman XH, Hanse EA, Yang Y, Ishak Gabra MB, Tran TQ, Li H, et al. p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake. Cell Rep. 2019;26:3051–3060. e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, et al. A Role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018;28:721–736. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun J, Nagel R, Zaal EA, Ugalde AP, Han R, Proost N, et al. SLC1A3 contributes to L-asparaginase resistance in solid tumors. EMBO J. 2019;38:e102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chiu M, Taurino G, Bianchi MG, Kilberg MS, Bussolati O. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front Oncol. 2020;9:1480.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Beyer SR, Mallmann RT, Jaenecke I, Habermeier A, Boissel JP, Closs EI. Identification of cysteine residues in human cationic amino acid transporter hCAT-2A that are targets for inhibition by N-Ethylmaleimide. J Biol Chem. 2013;288:30411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122:4–22.

    Article  CAS  PubMed  Google Scholar 

  70. Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med. 2019;11:eaau5758.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang M, Di Martino JS, Bowman RL, Campbell NR, Baksh SC, Simon-Vermot T, et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Disco. 2018;8:1006–25.

    Article  CAS  Google Scholar 

  72. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2015;112:2473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alarcón S, Toro M, de los Á, Villarreal C, Melo R, Fernández R, et al. Decreased equilibrative nucleoside transporter 1 (ENT1) activity contributes to the high extracellular adenosine levels in mesenchymal glioblastoma stem-like cells. Cells. 2020;9:1914.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Farrell JJ, Elsaleh H, Garcia M, Lai R, Ammar A, Regine WF, et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology. 2009;136:187–95.

    Article  PubMed  Google Scholar 

  75. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen CF, Hsu EC, Lin KT, Tu PH, Chang HW, Lin CH, et al. Overlapping high-resolution copy number alterations in cancer genomes identified putative cancer genes in hepatocellular carcinoma. Hepatology. 2010;52:1690–701.

    Article  CAS  PubMed  Google Scholar 

  77. Grozio A, Mills KF, Yoshino J, Bruzzone S, Sociali G, Tokizane K, et al. Slc12a8 is a nicotinamide mononucleotide transporter. Nat Metab. 2019;1:47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feigin ME, Garvin T, Bailey P, Waddell N, Chang DK, Kelley DR, et al. Recurrent noncoding regulatory mutations in pancreatic ductal adenocarcinoma. Nat Genet. 2017;49:825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luongo TS, Eller JM, Lu MJ, Niere M, Raith F, Perry C, et al. SLC25A51 is a mammalian mitochondrial NAD+ transporter. Nature. 2020;588:174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kory N, uit de Bos J, van der Rijt S, Jankovic N, Güra M, Arp N, et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. SciAdv. 2020;6:eabe5310.

    CAS  Google Scholar 

  81. Yang J, Zhang Z, Zhang Y, Ni X, Zhang G, Cui X. et al. ZIP4 promotes muscle wasting and cachexia in mice with orthotopic pancreatic tumors by stimulating RAB27B-regulated release of extracellular vesicles from cancer cells. Gastroenterology.2019;156:722–34.e6.

    Article  CAS  PubMed  Google Scholar 

  82. Wang G, Biswas AK, Ma W, Kandpal M, Coker C, Grandgenett PM, et al. Metastatic cancers promote cachexia through ZIP14 upregulation in skeletal muscle. Nat Med. 2018;24:770–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC, et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol. 2013;31:522–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bafaro E, Liu Y, Xu Y, Dempski RE. The emerging role of zinc transporters in cellular homeostasis and cancer. Sig Transduct Target Ther. 2017;2:17029.

    Article  Google Scholar 

  85. Barresi V, Valenti G, Spampinato G, Musso N, Castorina S, Rizzarelli E, et al. Transcriptome analysis reveals an altered expression profile of zinc transporters in colorectal cancer. J Cell Biochem. 2018;119:9707–19.

    Article  CAS  PubMed  Google Scholar 

  86. Garrick MD. Human iron transporters. Genes Nutr. 2011;6:45–54.

    Article  CAS  PubMed  Google Scholar 

  87. Wu J, Bao L, Zhang Z, Yi X. Nrf2 induces cisplatin resistance via suppressing the iron export related gene SLC40A1 in ovarian cancer cells. Oncotarget 2017;8:93502–15.

    Article  PubMed  PubMed Central  Google Scholar 

  88. He Y, Huang C, Cai K, Liu P, Chen X, Xu Y, et al. PRPF19 promotes tongue cancer growth and chemoradiotherapy resistance. Acta Biochim Biophys Sin. 2021;53:893–902.

    Article  CAS  PubMed  Google Scholar 

  89. Manolova V, Nyffenegger N, Flace A, Altermatt P, Varol A, Doucerain C, et al. Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia. J Clin Investig. 2019;130:491–506.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fogarty FM, O’Keeffe J, Zhadanov A, Papkovsky D, Ayllon V, O’Connor R. HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H+ ATPase. Oncogene. 2014;33:4653–63.

    Article  CAS  PubMed  Google Scholar 

  91. Palmieri F. The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol Asp Med. 2013;34:465–84.

    Article  CAS  Google Scholar 

  92. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, drosophila, and humans. Science 2012;337:96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012;337:93–6.

    Article  CAS  PubMed  Google Scholar 

  94. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, Xie J, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell. 2014;56:400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zou H, Chen Q, Zhang A, Wang S, Wu H, Yuan Y, et al. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis. 2019;10:148.

    Article  PubMed  PubMed Central  Google Scholar 

  96. You JH, Lee J, Roh JL. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett. 2021;507:40–54.

    Article  CAS  PubMed  Google Scholar 

  97. Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, et al. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31:267–283. e12

    Article  CAS  PubMed  Google Scholar 

  99. Kory N, Wyant GA, Prakash G, uit de Bos J, Bottanelli F, Pacold ME, et al. SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science. 2018;362:eaat9528.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Acoba MG, Alpergin ESS, Renuse S, Fernández-del-Río L, Lu YW, Khalimonchuk O, et al. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep. 2021;34:108869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang Y, Yen FS, Zhu XG, Timson RC, Weber R, Xing C, et al. SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells. Nature. 2021;599:136–40.

    Article  CAS  PubMed  Google Scholar 

  102. Shi X, Reinstadler B, Shah H, To TL, Byrne K, Summer L, et al. Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS. Nat Commun. 2022;13:2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang Y, He J, Zhang B, Zhang Z, Jia G, Liu S, et al. SLC25A1 promotes tumor growth and survival by reprogramming energy metabolism in colorectal cancer. Cell Death Dis. 2021;12:1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fernandez HR. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ. 2018;25:1239–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tan M, Mosaoa R, Graham GT, Kasprzyk-Pawelec A, Gadre S, Parasido E, et al. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH. Cell Death Differ. 2020;27:2143–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223–38.

    Article  PubMed  Google Scholar 

  107. Joly JH, Delfarah A, Phung PS, Parrish S, Graham NA. A synthetic lethal drug combination mimics glucose deprivation–induced cancer cell death in the presence of glucose. J Biol Chem. 2020;295:1350–65.

    Article  PubMed  Google Scholar 

  108. Bacci M, Lorito N, Ippolito L, Ramazzotti M, Luti S, Romagnoli S, et al. Reprogramming of amino acid transporters to support aspartate and glutamate dependency sustains endocrine resistance in breast cancer. Cell Rep. 2019;28:104–118. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Girardi E, César-Razquin A, Lindinger S, Papakostas K, Konecka J, Hemmerich J, et al. A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nat Chem Biol. 2020;16:469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bensimon A, Pizzagalli MD, Kartnig F, Dvorak V, Essletzbichler P, Winter GE, et al. Targeted degradation of SLC transporters reveals amenability of multi-pass transmembrane proteins to ligand-induced proteolysis. Cell Chem Biol. 2020;27:728–739. e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma H, Wu Z, Peng J, Li Y, Huang H, Liao Y, et al. Inhibition of SLC1A5 sensitizes colorectal cancer to cetuximab: SLC1A5 inhibition enhances the efficacy of cetuximab. Int J Cancer. 2018;142:2578–88.

    Article  CAS  PubMed  Google Scholar 

  112. Pathria G, Scott DA, Feng Y, Sang Lee J, Fujita Y, Zhang G, et al. Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J. 2018;37:e99735.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, et al. MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res. 2017;77:5913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood. 2007;109:3812–9.

    Article  CAS  PubMed  Google Scholar 

  115. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24:657–71.

    Article  CAS  PubMed  Google Scholar 

  116. Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 2017;5:101.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ji L, Zhao X, Zhang B, Kang L, Song W, Zhao B, et al. Slc6a8-mediated creatine uptake and accumulation reprogram macrophage polarization via regulating cytokine responses. Immunity. 2019;51:272–284. e7.

    Article  CAS  PubMed  Google Scholar 

  118. Ansari RE, Craze ML, Althobiti M, Alfarsi L, Ellis IO, Rakha EA, et al. Enhanced glutamine uptake influences composition of immune cell infiltrates in breast cancer. Br J Cancer. 2020;122:94–101.

    Article  CAS  PubMed  Google Scholar 

  119. Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, et al. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 2019;29:135–150. e9.

    Article  CAS  PubMed  Google Scholar 

  120. Huang T, Feng Q, Wang Z, Li W, Sun Z, Wilhelm J, et al. Tumor-targeted inhibition of monocarboxylate transporter 1 improves T-cell immunotherapy of solid tumors. Adv Healthcare Mater. 2020;10:2000549.

    Article  Google Scholar 

  121. Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature. 2020;585:277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer. 2018;142:1712–22.

    Article  CAS  PubMed  Google Scholar 

  123. Armenta DA, Laqtom NN, Alchemy G, Dong W, Morrow D, Poltorack CD, et al. Ferroptosis inhibition by lysosome-dependent catabolism of extracellular protein. Cell Chem Biol. 2022;29:1588–1600. e7.

    Article  CAS  PubMed  Google Scholar 

  124. Byun JK, Lee S, Kang GW, Lee YR, Park SY, Song IS, et al. Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2022;41:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kurata T, Oguri T, Isobe T, Ishioka S, Yamakido M. Differential expression of facilitative glucose transporter (GLUT) genes in primary lung cancers and their liver metastases. Jpn J Cancer Res. 1999;90:1238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Suganuma N, Segade F, Matsuzu K, Bowden DW. Differential expression of facilitative glucose transporters in normal and tumour kidney tissues. BJU Int. 2007;99:1143–9.

    Article  CAS  PubMed  Google Scholar 

  127. Alves VA. Characterization of monocarboxylate transporter activity in hepatocellular carcinoma. WJG. 2014;20:11780.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wellberg EA, Johnson S, Finlay-Schultz J, Lewis AS, Terrell KL, Sartorius CA, et al. The glucose transporter GLUT1 is required for ErbB2-induced mammary tumorigenesis. Breast Cancer Res. 2016;18:131.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Young CD, Lewis AS, Rudolph MC, Ruehle MD, Jackman MR, Yun UJ, et al. Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One. 2011;6:e23205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther. 2012;11:1672–82.

    Article  CAS  PubMed  Google Scholar 

  131. Rosser CJ, Liu L, Sun Y, Villicana P, McCullers M, Porvasnik S, et al. Bladder cancer-associated gene expression signatures identified by profiling of exfoliated urothelia. Cancer Epidemiol Biomark Prev. 2009;18:444–53.

    Article  CAS  Google Scholar 

  132. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci. 2013;16:1373–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Guo GF, Cai YC, Zhang B, Xu RH, Qiu HJ, Xia LP, et al. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol. 2011;28:197–203.

    Article  CAS  Google Scholar 

  134. Liu H, Ertay A, Peng P, Li J, Liu D, Xiong H, et al. SGLT1 is required for the survival of triple‐negative breast cancer cells via potentiation of EGFR activity. Mol Oncol. 2019;13:1874–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ishikawa N, Oguri T, Isobe T, Fujitaka K, Kohno N. SGLT gene expression in primary lung cancers and their metastatic lesions. Jpn J Cancer Res. 2001;92:874–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kuang H, Liao L, Chen H, Kang Q, Shu X, Wang Y. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit. 2017;23:3737–45.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Medina V. Fructose transporter Glut5 expression in clear renal cell carcinoma. Oncol Rep. 2011;25:315–23.

    Google Scholar 

  138. Zamora-Leon SP, Golde DW, Concha II, Rivas CI, Delgado-Lopez F, Baselga J, et al. Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci. 1996;93:1847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jin C, Gong X, Shang Y. GLUT5 increases fructose utilization in ovarian cancer. OTT. 2019;ume 12:5425–36.

    Article  Google Scholar 

  140. Su C, Li H, Gao W. GLUT5 increases fructose utilization and promotes tumor progression in glioma. Biochem Biophys Res Commun. 2018;500:462–9.

    Article  CAS  PubMed  Google Scholar 

  141. Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, et al. Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch. 2008;452:139–46.

    Article  CAS  PubMed  Google Scholar 

  142. Li KKW, Pang JCS, Ching AKK, Wong CK, Kong X, Wang Y, et al. miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 2009;40:1234–43.

    Article  CAS  PubMed  Google Scholar 

  143. Hong CS, Graham NA, Gu W, Espindola Camacho C, Mah V, Maresh EL, et al. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4. Cell Rep. 2016;14:1590–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Miranda-Gonçalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, et al. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro Oncol. 2013;15:172–88.

    Article  PubMed  Google Scholar 

  145. Mathupala SP, Parajuli P, Sloan AE. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery. 2004;55:1410–9.

    Article  PubMed  Google Scholar 

  146. Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol. 2010;2010:1–7.

    Article  Google Scholar 

  147. Pinheiro C, Albergaria A, Paredes J, Sousa B, Dufloth R, Vieira D, et al. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma: MCT1 in breast cancer. Histopathology. 2010;56:860–7.

    Article  PubMed  Google Scholar 

  148. Pinheiro C, Longatto-Filho A, Ferreira L, Pereira SMM, Etlinger D, Moreira MAR, et al. Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma. Int J Gynecol Pathol. 2008;27:568–74.

    Article  PubMed  Google Scholar 

  149. Ritzhaupt A, Wood IS, Ellis A, Hosie KB, Shirazi-Beechey SP. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport l -lactate as well as butyrate. J Physiol. 1998;513:719–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lambert DW, Wood IS, Ellis A, Shirazi-Beechey SP. Molecular changes in the expression of human colonic nutrient transporters during the transition from normality to malignancy. Br J Cancer. 2002;86:1262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pértega-Gomes N, Vizcaíno JR, Miranda-Gonçalves V, Pinheiro C, Silva J, Pereira H, et al. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. 2011;11:312.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Zhu J, Wu YN, Zhang W, Zhang XM, Ding X, Li HQ, et al. Monocarboxylate transporter 4 facilitates cell proliferation and migration and is associated with poor prognosis in oral squamous cell carcinoma patients. PLoS One. 2014;9:e87904.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Pinheiro C, Longatto-Filho A, Simões K, Jacob CE, Bresciani CJC, Zilberstein B, et al. The prognostic value of CD147/EMMPRIN is associated with monocarboxylate transporter 1 co-expression in gastric cancer. Eur J Cancer. 2009;45:2418–24.

    Article  CAS  PubMed  Google Scholar 

  154. Guo W, Li K, Sun B, Xu D, Tong L, Yin H, et al. Dysregulated glutamate transporter SLC1A1 propels cystine uptake via Xc- for glutathione synthesis in lung cancer. Cancer Res. 2021;81:552–66.

    Article  CAS  PubMed  Google Scholar 

  155. Shimizu K, Kaira K, Tomizawa Y, Sunaga N, Kawashima O, Oriuchi N, et al. ASC amino-acid transporter 2 (ASCT2) as a novel prognostic marker in non-small cell lung cancer. Br J Cancer. 2014;110:2030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Morotti M, Zois CE, El-Ansari R, Craze ML, Rakha EA, Fan SJ, et al. Increased expression of glutamine transporter SNAT2/SLC38A2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer. Br J Cancer. 2021;124:494–505.

    Article  CAS  PubMed  Google Scholar 

  157. Parker SJ, Amendola CR, Hollinshead KER, Yu Q, Yamamoto K, Encarnación-Rosado J, et al. Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discov. 2020;10:1018–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kim DK, Ahn SG, Park JC, Kanai Y, Endou H, Yoon JH. Expression of L-type Amino Acid Transporter 1 (LAT1) and 4F2 Heavy Chain (4F2hc) in oral squamous cell carcinoma and its precusor lesions. Anticancer Res. 2004;24:1671–5.

    CAS  PubMed  Google Scholar 

  159. Kobayashi K, Ohnishi A, Promsuk J, Shimizu S, Kanai Y, Shiokawa Y, et al. Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery. 2008;62:493–504.

    Article  PubMed  Google Scholar 

  160. Ji X, Qian J, Rahman SMJ, Siska PJ, Zou Y, Harris BK, et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 2018;37:5007–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang Y, Yee D. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC . Cancer Res. 2014;74:2295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Guo W, Zhao Y, Zhang Z, Tan N, Zhao F, Ge C, et al. Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma. Cancer Lett. 2011;312:55–61.

    Article  CAS  PubMed  Google Scholar 

  163. Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M, Daemen A, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 2013;24:450–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shao H, Mohamed EM, Xu GG, Waters M, Jing K, Ma Y, et al. Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget. 2016;7:3832–46.

    Article  PubMed  Google Scholar 

  165. Xu L, Li X, Cai M, Chen J, Li X, Wu WKK, et al. Increased expression of Solute carrier family 12 member 5 via gene amplification contributes to tumour progression and metastasis and associates with poor survival in colorectal cancer. Gut. 2016;65:635–46.

    Article  CAS  PubMed  Google Scholar 

  166. Yang GP, He WP, Tan JF, Yang ZX, Fan RR, Ma NF, et al. Overexpression of SLC12A5 is associated with tumor progression and poor survival in ovarian carcinoma. Int J Gynecol Cancer. 2019;29:1280–4.

    Article  PubMed  Google Scholar 

  167. Mohelnikova-Duchonova B, Brynychova V, Hlavac V, Kocik M, Oliverius M, Hlavsa J, et al. The association between the expression of solute carrier transporters and the prognosis of pancreatic cancer. Cancer Chemother Pharm. 2013;72:669–82.

    Article  CAS  Google Scholar 

  168. Jung Y, Jun Y, Lee HY, Kim S, Jung Y, Keum J, et al. Characterization of SLC22A18 as a tumor suppressor and novel biomarker in colorectal cancer. Oncotarget. 2015;6:25368–80.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Cheng X, Wei L, Huang X, Zheng J, Shao M, Feng T, et al. Solute carrier family 39 member 6 gene promotes aggressiveness of esophageal carcinoma cells by increasing intracellular levels of zinc, activating phosphatidylinositol 3-kinase signaling, and up-regulating genes that regulate metastasis. Gastroenterology. 2017;152:25.

    Article  Google Scholar 

  170. Wong CC, Qian Y, Li X, Xu J, Kang W, Tong JH, et al. SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology. 2016;151:945–960. e6.

    Article  CAS  PubMed  Google Scholar 

  171. Zou H. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis. 2019;10:148.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ZCN was supported by the Michigan Postdoctoral Pioneer Program at the University of Michigan Medical School, NIH/NCI grant K99CA267176 and NIH/NIGMS grant R25GM143298. MP was supported by NIH/NCI grants R01CA151588 and R01CA198074. CAL was supported by the NIH/NCI grants R37CA237421, R01CA248160, and R01CA244931, and MP and CAL by UMCCC Core Grant (P30CA046592). SEK was supported by the National Research Foundation of Korea (NRF) grant (2020R1C1C1013220). The funders had no role in the content and publication of this manuscript. The authors apologize to researchers whose relevant work could not be cited in this review due to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

ZCN and SEK conceived and wrote the original draft and drew the figures. MGS, MP, and CAL contributed to the critical revision of the manuscript and approved the submitted version.

Corresponding author

Correspondence to Sung Eun Kim.

Ethics declarations

Competing interests

CAL has received consulting fees from Astellas Pharmaceuticals, Odyssey Therapeutics, and T-Knife Therapeutics, and is an inventor on patents pertaining to Kras regulated metabolic pathways, redox control pathways in pancreatic cancer, and targeting the GOT1-pathway as a therapeutic approach (US Patent No: 2015126580-A1, 05/07/2015; US Patent No: 20190136238, 05/09/2019; International Patent No: WO2013177426-A2, 04/23/2015). Other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwosu, Z.C., Song, M.G., di Magliano, M.P. et al. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 42, 711–724 (2023). https://doi.org/10.1038/s41388-023-02593-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02593-x

This article is cited by

Search

Quick links