Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential

Abstract

Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STAT5aca causes lactogenic differentiation in ErbB2ca-induced precancerous lesions and tumors, and it blocks lung metastases.
Fig. 2: STAT5aca causes functional differentiation of mammary tumors initiated by PIK3CAH1047R.
Fig. 3: STAT5aca restricts the metastatic potential of human breast tumor cells, and higher STAT5A levels are associated with better prognosis of patients.
Fig. 4: STAT5aca suppresses breast cancer EMT.

Similar content being viewed by others

Data availability

Available upon request to liyi@bcm.edu.

References

  1. Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17:323–37.

    Article  PubMed  Google Scholar 

  2. Haricharan S, Li Y. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis. Mol Cell Endocrinol. 2014;382:560–9.

    Article  CAS  PubMed  Google Scholar 

  3. Hennighausen L, Robinson GW. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev. 2008;22:711–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wagner KU, Rui H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia. 2008;13:93–103.

    Article  PubMed  Google Scholar 

  5. Watson CJ, Neoh K. The Stat family of transcription factors have diverse roles in mammary gland development. Semin Cell Dev Biol. 2008;19:401–6.

    Article  CAS  PubMed  Google Scholar 

  6. Dong J, Tong T, Reynado AM, Rosen JM, Huang S, Li Y. Genetic manipulation of individual somatic mammary cells in vivo reveals a master role of STAT5a in inducing alveolar fate commitment and lactogenesis even in the absence of ovarian hormones. Dev Biol. 2010;346:196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi A, Dong J, Hilsenbeck S, Bi L, Zhang H, Li Y. The Status of STAT3 and STAT5 in Human Breast Atypical Ductal Hyperplasia. PLoS One. 2015;10:e0132214.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Haricharan S, Dong J, Hein S, Reddy JP, Du Z, Toneff M, et al. Mechanism and preclinical prevention of increased breast cancer risk caused by pregnancy. Elife. 2013;2:e00996.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA. Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer. 2004;108:665–71.

    Article  CAS  PubMed  Google Scholar 

  10. Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J, et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:2053–60.

    Article  CAS  Google Scholar 

  11. Peck AR, Witkiewicz AK, Liu C, Stringer GA, Klimowicz AC, Pequignot E, et al. Loss of nuclear localized and tyrosine phosphorylated Stat5 in breast cancer predicts poor clinical outcome and increased risk of antiestrogen therapy failure. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:2448–58.

    Article  CAS  Google Scholar 

  12. Iavnilovitch E, Cardiff RD, Groner B, Barash I. Deregulation of Stat5 expression and activation causes mammary tumors in transgenic mice. Int J Cancer. 2004;112:607–19.

    Article  CAS  PubMed  Google Scholar 

  13. Iavnilovitch E, Eilon T, Groner B, Barash I. Expression of a carboxy terminally truncated Stat5 with no transactivation domain in the mammary glands of transgenic mice inhibits cell proliferation during pregnancy, delays onset of milk secretion, and induces apoptosis upon involution. Mol Reprod Dev. 2006;73:841–9.

    Article  CAS  PubMed  Google Scholar 

  14. Eilon T, Groner B, Barash I. Tumors caused by overexpression and forced activation of Stat5 in mammary epithelial cells of transgenic mice are parity-dependent and developed in aged, postestropausal females. Int J Cancer. 2007;121:1892–902.

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita H, Nishio M, Ando Y, Zhang Z, Hamaguchi M, Mita K, et al. Stat5 expression predicts response to endocrine therapy and improves survival in estrogen receptor-positive breast cancer. Endocr Relat Cancer. 2006;13:885–93.

    Article  CAS  PubMed  Google Scholar 

  16. Strauss BL, Bratthauer GL, Tavassoli FA. STAT 5a expression in the breast is maintained in secretory carcinoma, in contrast to other histologic types. Hum Pathol. 2006;37:586–92.

    Article  CAS  PubMed  Google Scholar 

  17. Nouhi Z, Chughtai N, Hartley S, Cocolakis E, Lebrun JJ, Ali S. Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res. 2006;66:1824–32.

    Article  CAS  PubMed  Google Scholar 

  18. Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene. 2005;24:746–60.

    Article  CAS  PubMed  Google Scholar 

  19. Sultan AS, Brim H, Sherif ZA. Co-overexpression of Janus kinase 2 and signal transducer and activator of transcription 5a promotes differentiation of mammary cancer cells through reversal of epithelial-mesenchymal transition. Cancer Sci. 2008;99:272–9.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Rouse C, Jasper JS, Pendergast AM. ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling. Sci Signal. 2016;9:ra12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gu L, Vogiatzi P, Puhr M, Dagvadorj A, Lutz J, Ryder A, et al. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr Relat Cancer. 2010;17:481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Zhang Y, Glass A, Zellweger T, Gehan E, Bubendorf L, et al. Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin Cancer Res. 2005;11:5863–8.

    Article  CAS  PubMed  Google Scholar 

  23. Lee TK, Man K, Poon RT, Lo CM, Yuen AP, Ng IO, et al. Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial-mesenchymal transition. Cancer Res. 2006;66:9948–56.

    Article  CAS  PubMed  Google Scholar 

  24. Koppikar P, Lui VW, Man D, Xi S, Chai RL, Nelson E, et al. Constitutive activation of signal transducer and activator of transcription 5 contributes to tumor growth, epithelial-mesenchymal transition, and resistance to epidermal growth factor receptor targeting. Clin Cancer Res. 2008;14:7682–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Talati PG, Gu L, Ellsworth EM, Girondo MA, Trerotola M, Hoang DT, et al. Jak2-Stat5a/b signaling induces epithelial-to-mesenchymal transition and stem-like cell properties in prostate cancer. Am J Pathol. 2015;185:2505–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kinslechner K, Schorghofer D, Schutz B, Vallianou M, Wingelhofer B, Mikulits W, et al. Malignant phenotypes in metastatic melanoma are governed by SR-BI and its association with glycosylation and STAT5 activation. Mol cancer Res: MCR. 2018;16:135–46.

    Article  CAS  PubMed  Google Scholar 

  27. Du Z, Podsypanina K, Huang S, McGrath A, Toneff MJ, Bogoslovskaia E, et al. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc Natl Acad Sci USA. 2006;103:17396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11:179–86.

    Article  CAS  PubMed  Google Scholar 

  29. Dumon S, Santos SC, Debierre-Grockiego F, Gouilleux-Gruart V, Cocault L, Boucheron C, et al. IL-3 dependent regulation of Bcl-xL gene expression by STAT5 in a bone marrow derived cell line. Oncogene. 1999;18:4191–9.

    Article  CAS  PubMed  Google Scholar 

  30. Minieri V, De Dominici M, Porazzi P, Mariani SA, Spinelli O, Rambaldi A, et al. Targeting STAT5 or STAT5-regulated pathways suppresses leukemogenesis of Ph+ acute lymphoblastic leukemia. Cancer Res. 2018;78:5793–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schorr K, Furth PA. Induction of bcl-xL expression in mammary epithelial cells is glucocorticoid-dependent but not signal transducer and activator of transcription 5-dependent. Cancer Res. 2000;60:5950–3.

    CAS  PubMed  Google Scholar 

  32. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  33. Young A, Bu W, Jiang W, Ku A, Kapali J, Dhamne S, et al. Targeting the pro-survival protein BCL-2 to prevent breast cancer. Cancer Prev Res. 2022;15:3–10.

    Article  CAS  Google Scholar 

  34. Meyer DS, Brinkhaus H, Muller U, Muller M, Cardiff RD, Bentires-Alj M. Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 2011;71:4344–51.

    Article  CAS  PubMed  Google Scholar 

  35. Liu P, Cheng H, Santiago S, Raeder M, Zhang F, Isabella A, et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med. 2011;17:1116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46:D956–D963.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16:67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 2013;154:1060–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 2016;7:11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Metser G, Shin HY, Wang C, Yoo KH, Oh S, Villarino AV, et al. An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Res. 2016;44:1052–63.

    Article  CAS  PubMed  Google Scholar 

  42. Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer. 2013;132:745–54.

    Article  CAS  PubMed  Google Scholar 

  43. Yamaji D, Kang K, Robinson GW, Hennighausen L. Sequential activation of genetic programs in mouse mammary epithelium during pregnancy depends on STAT5A/B concentration. Nucleic Acids Res. 2013;41:1622–36.

    Article  CAS  PubMed  Google Scholar 

  44. Johnston AN, Bu W, Hein S, Garcia S, Camacho L, Xue L, et al. Hyperprolactinemia-inducing antipsychotics increase breast cancer risk by activating JAK-STAT5 in precancerous lesions. Breast Cancer Res. 2018;20:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129:1377–86.

    Article  CAS  PubMed  Google Scholar 

  46. Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Developmental Biol. 2007;303:29–44.

    Article  CAS  Google Scholar 

  47. Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23:6980–5.

    Article  CAS  PubMed  Google Scholar 

  48. Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M, et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol. 1998;18:3871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bu W, Li Y. Intraductal injection of lentivirus vectors for stably introducing genes into rat mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia. 2020;25:389–96.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bu W, Xin L, Toneff M, Li L, Li Y. Lentivirus vectors for stably introducing genes into mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia. 2009;14:401–4.

    Article  PubMed  Google Scholar 

  51. Behbod F, Kittrell FS, Lamarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res. 2009;11:R66.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Reddy JP, Li Y. The RCAS-TVA system for introduction of oncogenes into selected somatic mammary epithelial cells in vivo. J Mammary Gland Biol Neoplasia. 2009;14:405–9.

    Article  PubMed  Google Scholar 

  53. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 2003;30:256–68.

    Article  CAS  PubMed  Google Scholar 

  54. Yue F, Jiang W, Ku AT, Young AIJ, Zhang W, Souto EP, et al. A Wnt-Independent LGR4-EGFR signaling axis in cancer metastasis. Cancer Res. 2021;81:4441–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Creighton CJ, Huang S. Reverse phase protein arrays in signaling pathways: a data integration perspective. Drug Des Dev Ther. 2015;9:3519–27.

    CAS  Google Scholar 

  56. Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  57. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vasaikar SV, Deshmukh AP, den Hollander P, Addanki S, Kuburich NA, Kudaravalli S, et al. EMTome: a resource for pan-cancer analysis of epithelial-mesenchymal transition genes and signatures. Br J cancer. 2021;124:259–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by DOD CDMRP BC191649 & BC191646 (to YL). The authors thank the SPORE-funded (P50CA186784) Pathology Core Facility at the Breast Center for tissue processing and Dr. Gary Chamness for helpful comments on the manuscript; the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the CPRIT Core Facility Support Award (CPRIT-RP180672), the NIH (P30 CA125123 and S10 RR024574) and the expert assistance of Joel M. Sederstrom; the Antibody-Based Proteomics Core (RPPA core) at Baylor College of Medicine funded by CPRIT Core Facility Award (RP210227) and P30 Cancer Center Support Grant (NCI-CA125123), NIH S10 instrument award (S10OD028648-01), and the expert help of Dr. Xuan Wang. The authors thank Le Ma for gifting reagents and Dr. Wen Bu for intellectual input. ML is supported by the Chinese Scholarship Council (CSC), AK was supported by T32-CA203690. JMR is supported by NIH016303. CJC is supported by NIH CA125123.

Author information

Authors and Affiliations

Authors

Contributions

ML, ATK, JD contributed to the experimental design, methodology, data acquisition and analysis. WJ and AAI contributed to data acquisition in animal work. CN and CG evaluated slides and provided pathological reports. FY, FP and CJC performed bio-informatic analyses. SGH supervised statistical analyses. ML, ATK, and YL wrote the manuscript. JMR, XHZ, XC, YND, SH, AS and ZF provided supervision. All authors read the manuscript, agreed with the content, and were given the opportunity to provide input.

Corresponding author

Correspondence to Yi Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal procedures were performed under the institutional animal care and use committee of Baylor College of Medicine with the recommendations in the Guide for care and Use of Laboratory Animals.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Ku, A.T., Dong, J. et al. STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential. Oncogene 41, 5214–5222 (2022). https://doi.org/10.1038/s41388-022-02500-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02500-w

Search

Quick links