Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ARHGAP–RhoA signaling provokes homotypic adhesion-triggered cell death of metastasized diffuse-type gastric cancer

Abstract

Genetic alteration of Rho GTPase-activating proteins (ARHGAP) and GTPase RhoA is a hallmark of diffuse-type gastric cancer and elucidating its biological significance is critical to comprehensively understanding this malignancy. Here, we report that gene fusions of ARHGAP6/ARHGAP26 are frequent genetic events in peritoneally-metastasized gastric and pancreatic cancer. From the malignant ascites of patients, we established gastric cancer cell lines that spontaneously gain hotspot RHOA mutations or four different ARHGAP6/ARHGAP26 fusions. These alterations critically downregulate RhoA–ROCK–MLC2 signaling, which elicits cell death. Omics and functional analyses revealed that the downstream signaling initiates actin stress fibers and reinforces intercellular junctions via several types of catenin. E-cadherin-centered homotypic adhesion followed by lysosomal membrane permeabilization is a pivotal mechanism in cell death. These findings support the tumor-suppressive nature of ARHGAP–RhoA signaling and might indicate a new avenue of drug discovery against this refractory cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of ARHGAP6/26 fusions and mutated RHOA in established DGC cell lines.
Fig. 2: RhoA Y42C downregulates ROCK-MLC2 signaling and escapes from cell death.
Fig. 3: RhoA elicits lysosomal leakage via E-cadherin-mediated homotypic adhesion.
Fig. 4: ARHGAP26 fusions inhibit RhoA and evade cell death.
Fig. 5: Loss of ARHGAP26 fusions activated RhoA-ROCK signaling and elicit E-cadherin-mediated homotypic adhesion.
Fig. 6: RP2-ARHGAP6 fusion give DGC cells invasiveness and caner stemness.
Fig. 7: Whole picture of dysregulated ARHGAP-RhoA signaling in DGC cells.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  CAS  PubMed  Google Scholar 

  3. Qiu MZ, Cai MY, Zhang DS, Wang ZQ, Wang DS, Li YH, et al. Clinicopathological characteristics and prognostic analysis of Lauren classification in gastric adenocarcinoma in China. J Transl Med. 2013;11:58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Polkowski W, van Sandick JW, Offerhaus GJ, ten Kate FJ, Mulder J, Obertop H, et al. Prognostic value of Lauren classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol. 1999;6:290–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng HC, Li XH, Hara T, Masuda S, Yang XH, Guan YF, et al. Mixed-type gastric carcinomas exhibit more aggressive features and indicate the histogenesis of carcinomas. Virchows Arch. 2008;452:525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duarte I, Llanos O. Patterns of metastases in intestinal and diffuse types of carcinoma of the stomach. Hum Pathol. 1981;12:237–42.

    Article  CAS  PubMed  Google Scholar 

  8. Maruyama K, Kaminishi M, Hayashi K, Isobe Y, Honda I, Katai H, et al. Gastric cancer treated in 1991 in Japan: data analysis of nationwide registry. Gastric Cancer. 2006;9:51–66.

    Article  PubMed  Google Scholar 

  9. Shim HJ, Kim HJ, Lee SH, Bae WK, Hwang EC, Cho SH, et al. Observational study of peritoneal washing cytology-positive gastric cancer without gross peritoneal metastasis in patients who underwent radical D2 gastrectomy. Sci Rep. 2020;10:9549.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mimori K, Fukagawa T, Kosaka Y, Kita Y, Ishikawa K, Etoh T, et al. Hematogenous metastasis in gastric cancer requires isolated tumor cells and expression of vascular endothelial growth factor receptor-1. Clin Cancer Res. 2008;14:2609–16.

    Article  CAS  PubMed  Google Scholar 

  11. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  Google Scholar 

  12. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  13. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang WH, Zhang SY, Hou QQ, Qin Y, Chen XZ, Zhou ZG, et al. The significance of the CLDN18-ARHGAP fusion gene in gastric cancer: a systematic review and meta-analysis. Front Oncol. 2020;10:1214.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Svensmark JH, Brakebusch C. Rho GTPases in cancer: friend or foe? Oncogene. 2019;38:7447–56.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang H, Schaefer A, Wang Y, Hodge RG, Blake DR, Diehl JN, et al. Gain-of-function RHOA mutations promote focal adhesion kinase activation and dependency in diffuse gastric cancer. Cancer Disco. 2020;10:288–305.

    Article  CAS  Google Scholar 

  17. Tanaka A, Ishikawa S, Ushiku T, Yamazawa S, Katoh H, Hayashi A, et al. Frequent CLDN18-ARHGAP fusion in highly metastatic diffuse-type gastric cancer with relatively early onset. Oncotarget. 2018;9:29336–50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakayama I, Shinozaki E, Sakata S, Yamamoto N, Fujisaki J, Muramatsu Y, et al. Enrichment of CLDN18-ARHGAP fusion gene in gastric cancers in young adults. Cancer Sci. 2019;110:1352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shu Y, Zhang W, Hou Q, Zhao L, Zhang S, Zhou J, et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun. 2018;9:2447.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang H, Hong D, Cho SY, Park YS, Ko WR, Kim JH, et al. RhoGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer. Nat Commun. 2018;9:4439.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu XF, Gao F, Wang JJ, Long C, Chen X, Tao L, et al. BMX-ARHGAP fusion protein maintains the tumorigenicity of gastric cancer stem cells by activating the JAK/STAT3 signaling pathway. Cancer Cell Int. 2019;19:133.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yao F, Kausalya JP, Sia YY, Teo AS, Lee WH, Ong AG, et al. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 2015;12:272–85.

    Article  CAS  PubMed  Google Scholar 

  23. Bros M, Haas K, Moll L, Grabbe S. RhoA as a key regulator of innate and adaptive immunity. Cells. 2019;8:733–62.

    Article  CAS  PubMed Central  Google Scholar 

  24. MacDonald JA, Walsh MP. Regulation of smooth muscle myosin light chain phosphatase by multisite phosphorylation of the myosin targeting subunit, MYPT1. Cardiovasc Hematol Disord Drug Targets. 2018;18:4–13.

    Article  CAS  PubMed  Google Scholar 

  25. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–83.

    Article  CAS  PubMed  Google Scholar 

  26. Ratheesh A, Yap AS. A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nat Rev Mol cell Biol. 2012;13:673–9.

    Article  CAS  PubMed  Google Scholar 

  27. Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, et al. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8:1118–50.

    Article  CAS  PubMed Central  Google Scholar 

  28. Lu M, Marsters S, Ye X, Luis E, Gonzalez L, Ashkenazi A. E-cadherin couples death receptors to the cytoskeleton to regulate apoptosis. Mol Cell. 2014;54:987–98.

    Article  CAS  PubMed  Google Scholar 

  29. Ivanov A, Beers SA, Walshe CA, Honeychurch J, Alduaij W, Cox KL, et al. Monoclonal antibodies directed to CD20 and HLA-DR can elicit homotypic adhesion followed by lysosome-mediated cell death in human lymphoma and leukemia cells. J Clin Invest. 2009;119:2143–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma Z, Myers DP, Wu RF, Nwariaku FE, Terada LS. p66Shc mediates anoikis through RhoA. J Cell Biol. 2007;179:23–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.

    Article  CAS  PubMed  Google Scholar 

  33. Buchheit CL, Weigel KJ, Schafer ZT. Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression. Nat Rev Cancer. 2014;14:632–41.

    Article  CAS  PubMed  Google Scholar 

  34. Hamann JC, Surcel A, Chen R, Teragawa C, Albeck JG, Robinson DN, et al. Entosis is induced by glucose starvation. Cell Rep. 2017;20:201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumeta M, Panina Y, Yamazaki H, Takeyasu K, Yoshimura SH. N-terminal dual lipidation-coupled molecular targeting into the primary cilium. Genes Cells. 2018;23:715–23.

    Article  CAS  Google Scholar 

  36. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7:11018–32.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Maeda M, Ushijima T. RHOA mutation may be associated with diffuse-type gastric cancer progression, but is it gain or loss? Gastric Cancer. 2016;19:326–8.

    Article  PubMed  Google Scholar 

  38. Ushiku T, Ishikawa S, Kakiuchi M, Tanaka A, Katoh H, Aburatani H, et al. RHOA mutation in diffuse-type gastric cancer: a comparative clinicopathology analysis of 87 cases. Gastric Cancer. 2016;19:403–11.

    Article  CAS  PubMed  Google Scholar 

  39. Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007;99:67–86.

    Article  CAS  PubMed  Google Scholar 

  40. Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol. 2020;55:386–407.

    Article  CAS  PubMed  Google Scholar 

  41. Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim Biophys Acta. 2008;1778:588–600.

    Article  CAS  PubMed  Google Scholar 

  42. Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene. 2004;23:7947–56.

    Article  CAS  PubMed  Google Scholar 

  43. Leverrier Y, Ridley AJ. Apoptosis: caspases orchestrate the ROCK ‘n’ bleb. Nat Cell Biol. 2001;3:E91–93.

    Article  CAS  PubMed  Google Scholar 

  44. Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell. 2016;27:3233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mendonsa AM, Na TY, Gumbiner BM. E-cadherin in contact inhibition and cancer. Oncogene. 2018;37:4769–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Han MK, de Rooij J. Resolving the cadherin-F-actin connection. Nat Cell Biol. 2016;19:14–16.

    Article  PubMed  Google Scholar 

  47. Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH, et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood. 2011;117:4519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med. 2005;11:725–30.

    Article  PubMed  Google Scholar 

  49. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27:6434–51.

    Article  CAS  PubMed  Google Scholar 

  50. Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, et al. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 2018;23:882–97.

    Article  CAS  PubMed  Google Scholar 

  51. Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Song HN, Jung KS, Yoo KH, Cho J, Lee JY, Lim SH, et al. Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR inhibitor (HM61713) in non-small cell lung cancer. J Thorac Oncol. 2016;11:e45–47.

    Article  PubMed  Google Scholar 

  53. Fukagawa T, Katai H, Saka M, Morita S, Sasajima Y, Taniguchi H, et al. Significance of lavage cytology in advanced gastric cancer patients. World J Surg. 2010;34:563–8.

    Article  PubMed  Google Scholar 

  54. Tanaka Y, Chiwaki F, Kojima S, Kawazu M, Komatsu M, Ueno T, et al. Multi-omic profiling of peritoneal metastases in gastric cancer identifies molecular subtypes and therapeutic vulnerabilities. Nat Cancer. 2021;2:962–77.

    Article  CAS  PubMed  Google Scholar 

  55. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, et al. Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteom. 2006;5:1338–47.

    Article  CAS  Google Scholar 

  57. Negishi A, Ono M, Handa Y, Kato H, Yamashita K, Honda K, et al. Large-scale quantitative clinical proteomics by label-free liquid chromatography and mass spectrometry. Cancer Sci. 2009;100:514–9.

    Article  CAS  PubMed  Google Scholar 

  58. Abe Y, Hirano H, Shoji H, Tada A, Isoyama J, Kakudo A, et al. Comprehensive characterization of the phosphoproteome of gastric cancer from endoscopic biopsy specimens. Theranostics. 2020;10:2115–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of Biomedical Innovation (Program ID10-41), by the National Cancer Center Research and Development Fund (28-A-11, 29-A-2, and 2020-J-2), by AMED (Japan Agency for Medical Research and Development, JP20ck0106519), and by Astellas Pharma, Inc (CH27066). We thank H. Nikki March, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MK planned the study, performed experiments, analyzed the data, and wrote the manuscript; FC, RK, and MA performed the experiments; HI, HSak, and KT carried out next-generation sequencing and analyzed the data; TF, HM, NB, and KM collected clinical samples; TY, FT, and HSas conceived and planned the study, analyzed the data, and wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Masayuki Komatsu or Hiroki Sasaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, M., Ichikawa, H., Chiwaki, F. et al. ARHGAP–RhoA signaling provokes homotypic adhesion-triggered cell death of metastasized diffuse-type gastric cancer. Oncogene 41, 4779–4794 (2022). https://doi.org/10.1038/s41388-022-02469-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02469-6

This article is cited by

Search

Quick links