Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HFE promotes mitotic cell division through recruitment of cytokinetic abscission machinery in hepatocellular carcinoma

Abstract

HFE (Hemochromatosis) is a conventional iron level regulator and its loss of function due to gene mutations increases the risk of cancers including hepatocellular carcinoma (HCC). Likewise, studies focusing on HFE overexpression in cancers are all limited to linking up these events as a consequence of iron level deregulation. No study has explored any iron unrelated role of HFE in cancers. Here, we first reported HFE as an oncogene in HCC and its undescribed function on promoting abscission in cytokinesis during mitotic cell division, independent of its iron-regulating ability. Clinical analyses revealed HFE upregulation in tumors linking to large tumor size and poor prognosis. Functionally and mechanistically, HFE promoted cytokinetic abscission via facilitating ESCRT abscission machinery recruitment to the abscission site through signaling a novel HFE/ALK3/Smads/LIF/Hippo/YAP/YY1/KIF13A axis. Pharmacological blockage of HFE signaling axis impeded tumor phenotypes in vitro and in vivo. Our data on HFE-driven HCC unveiled a new mechanism utilized by cancer cells to propel rapid cell division. This study also laid the groundwork for tumor intolerable therapeutics development given the high cytokinetic dependency of cancer cells and their vulnerability to cytokinetic blockage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HFE overexpression correlates with poor prognosis of HCC patients.
Fig. 2: HFE promotes HCC cell proliferation, growth and apoptosis evasion.
Fig. 3: HFE enhances HCC tumor growth in vivo.
Fig. 4: HFE loss arrests HCC cells in G2/M phase of cell cycle accompanying cytokinesis defect, supernumerary centrosomes and multipolar spindles.
Fig. 5: HFE suppression-induced microtubule derangement and cytokinetic bridge deformation limits abscission factor CHMP1B recruitment in dividing HCC cells.
Fig. 6: HFE interacts with ALK3 and transduces through Smads, LIF, Hippo/YAP.
Fig. 7: Positive correlation of HFE and KIF13A in HCC.
Fig. 8: Pharmacological inhibition of HFE/ALK3/Smads/LIF/Hippo/YAP/YY1/KIF13A axis using verteporfin abolishes HFE-induced tumor phenotypes in vitro and in vivo.

Similar content being viewed by others

References

  1. Lens SMA, Medema RH. Cytokinesis defects and cancer. Nat Rev Cancer. 2019;19:32–45.

    Article  CAS  Google Scholar 

  2. D’Avino PP, Giansanti MG, Petronczki M. Cytokinesis in animal cells. Cold Spring Harb Perspect Biol. 2015;7:a015834.

    Article  Google Scholar 

  3. Donne R, Saroul-Ainama M, Cordier P, Celton-Morizur S, Desdouets C. Polyploidy in liver development, homeostasis and disease. Nat Rev Gastroenterol Hepatol. 2020;17:391–405.

    Article  CAS  Google Scholar 

  4. Fededa JP, Gerlich DW. Molecular control of animal cell cytokinesis. Nat Cell Biol. 2012;14:440–7.

    Article  CAS  Google Scholar 

  5. Zhang S, Nguyen LH, Zhou K, Tu HC, Sehgal A, Nassour I, et al. Knockdown of Anillin Actin Binding Protein Blocks Cytokinesis in Hepatocytes and Reduces Liver Tumor Development in Mice Without Affecting Regeneration. Gastroenterology. 2018;154:1421–34.

    Article  CAS  Google Scholar 

  6. Xing T, Yan T, Zhou Q. Identification of key candidate genes and pathways in hepatocellular carcinoma by integrated bioinformatical analysis. Exp Ther Med. 2018;15:4932–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong F, Yang Q, Wu Z, Hu X, Shi D, Feng M, et al. Identification of survival-related predictors in hepatocellular carcinoma through integrated genomic, transcriptomic, and proteomic analyses. Biomed Pharmacother. 2019;114:108856.

    Article  CAS  Google Scholar 

  8. Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene. 2015;574:179–92.

    Article  CAS  Google Scholar 

  9. Reuben A, Chung JW, Lapointe R, Santos MM. The hemochromatosis protein HFE 20 years later: An emerging role in antigen presentation and in the immune system. Immun Inflamm Dis. 2017;5:218–32.

    Article  CAS  Google Scholar 

  10. Weston C, Connor J. Evidence for the Influence of the Iron Regulatory MHC Class I Molecule HFE on Tumor Progression in Experimental Models and Clinical Populations. Transl Oncogenomics. 2014;6:1–12.

    Article  Google Scholar 

  11. Lenarduzzi M, Hui AB, Yue S, Ito E, Shi W, Williams J, et al. Hemochromatosis enhances tumor progression via upregulation of intracellular iron in head and neck cancer. PLoS One. 2013;8:e74075.

    Article  CAS  Google Scholar 

  12. Josson S, Matsuoka Y, Gururajan M, Nomura T, Huang WC, Yang X, et al. Inhibition of beta2-microglobulin/hemochromatosis enhances radiation sensitivity by induction of iron overload in prostate cancer cells. PLoS One. 2013;8:e68366.

    Article  CAS  Google Scholar 

  13. Wang MT, Fer N, Galeas J, Collisson EA, Kim SE, Sharib J, et al. Blockade of leukemia inhibitory factor as a therapeutic approach to KRAS driven pancreatic cancer. Nat Commun. 2019;10:3055.

    Article  Google Scholar 

  14. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A Red Carpet for Iron Metabolism. Cell. 2017;168:344–61.

    Article  CAS  Google Scholar 

  15. Poli M, Asperti M, Ruzzenenti P, Regoni M, Arosio P. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharm. 2014;5:86.

    Article  Google Scholar 

  16. Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell. 2009;15:315–27.

    Article  CAS  Google Scholar 

  17. Sagona AP, Nezis IP, Pedersen NM, Liestol K, Poulton J, Rusten TE, et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol. 2010;12:362–71.

    Article  CAS  Google Scholar 

  18. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20:888–99.

    Article  CAS  Google Scholar 

  19. Verheul TCJ, van Hijfte L, Perenthaler E, Barakat TS. The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Front Cell Dev Biol. 2020;8:592164.

    Article  Google Scholar 

  20. Hoxha S, Shepard A, Troutman S, Diao H, Doherty JR, Janiszewska M, et al. YAP-Mediated Recruitment of YY1 and EZH2 Represses Transcription of Key Cell-Cycle Regulators. Cancer Res. 2020;80:2512–22.

    Article  CAS  Google Scholar 

  21. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A. The discovery of the new haemochromatosis gene. 1996. J Hepatol. 2003;38:704–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yang XM, Cao XY, He P, Li J, Feng MX, Zhang YL, et al. Overexpression of Rac GTPase Activating Protein 1 Contributes to Proliferation of Cancer Cells by Reducing Hippo Signaling to Promote Cytokinesis. Gastroenterology. 2018;155:1233–49 e22.

    Article  CAS  Google Scholar 

  23. Tang H, Zhao H, Yu ZY, Feng X, Fu BS, Qiu CH, et al. MicroRNA-194 inhibits cell invasion and migration in hepatocellular carcinoma through PRC1-mediated inhibition of Wnt/beta-catenin signaling pathway. Dig Liver Dis. 2019;51:1314–22.

    Article  CAS  Google Scholar 

  24. Shen H, Wang Z, Ren S, Wang W, Duan L, Zhu D, et al. Prognostic biomarker MITD1 and its correlation with immune infiltrates in hepatocellular carcinoma (HCC). Int Immunopharmacol. 2020;81:106222.

    Article  CAS  Google Scholar 

  25. Fan Y, Du Z, Ding Q, Zhang J, Op Den Winkel M, Gerbes AL, et al. SEPT6 drives hepatocellular carcinoma cell proliferation, migration and invasion via the Hippo/YAP signaling pathway. Int J Oncol. 2021;58:25.

    Article  CAS  Google Scholar 

  26. Maugeri-Sacca M, De Maria R. The Hippo pathway in normal development and cancer. Pharm Ther. 2018;186:60–72.

    Article  CAS  Google Scholar 

  27. Bui DA, Lee W, White AE, Harper JW, Schackmann RC, Overholtzer M, et al. Cytokinesis involves a nontranscriptional function of the Hippo pathway effector YAP. Sci Signal. 2016;9:ra23.

    Article  Google Scholar 

  28. Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett. 2019;440-441:64–81.

    Article  CAS  Google Scholar 

  29. Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol. 2009;10:682–96.

    Article  CAS  Google Scholar 

  30. Xu H, Choe C, Shin SH, Park SW, Kim HS, Jung SH, et al. Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med. 2014;46:e97.

    Article  CAS  Google Scholar 

  31. Yang T, Zhang XB, Zheng ZM. Suppression of KIF14 expression inhibits hepatocellular carcinoma progression and predicts favorable outcome. Cancer Sci. 2013;104:552–7.

    Article  CAS  Google Scholar 

  32. Sun X, Jin Z, Song X, Wang J, Li Y, Qian X, et al. Evaluation of KIF23 variant 1 expression and relevance as a novel prognostic factor in patients with hepatocellular carcinoma. BMC Cancer. 2015;15:961.

    Article  Google Scholar 

  33. Lu M, Huang X, Chen Y, Fu Y, Xu C, Xiang W, et al. Aberrant KIF20A expression might independently predict poor overall survival and recurrence-free survival of hepatocellular carcinoma. IUBMB Life. 2018;70:328–35.

    Article  CAS  Google Scholar 

  34. Liu X, Li Y, Zhang X, Liu XY, Peng A, Chen Y, et al. Inhibition of kinesin family member 20B sensitizes hepatocellular carcinoma cell to microtubule-targeting agents by blocking cytokinesis. Cancer Sci. 2018;109:3450–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Lui Ng from Department of Surgery, The University of Hong Kong for providing anti-Smad2/3 antibodies.

Funding

This study was financially supported by Theme-based Research Scheme (T42-103/16-N and T12-703/19-R) of the Research Grants Council, Hong Kong and the Health@InnoHK program of the Innovation and Technology Commission of the Hong Kong SAR Government.

Author information

Authors and Affiliations

Authors

Contributions

PD, ZC, BL, and NPL: study concept and design; PD, ZC, AKC, MWC, CHA: acquisition of data; PD, ZC, YZ, AKC, MWC, CHA: analysis and interpretation of data; PD, ZC, AKC, MWC, NPL: drafting of the manuscript; CHA, KM, NPL: critical revision of the manuscript for important intellectual content; PD, ZC, CHA: statistical analysis; CML, KM, NPL: obtained funding; AKC, MWC, CHA, WKS, TTC, KM, NPL: administrative, technical, or material support; WKS, TTC, CML, KM, NPL: study supervision.

Corresponding authors

Correspondence to Kwan Man or Nikki P. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, P., Cai, Z., Li, B. et al. HFE promotes mitotic cell division through recruitment of cytokinetic abscission machinery in hepatocellular carcinoma. Oncogene 41, 4185–4199 (2022). https://doi.org/10.1038/s41388-022-02419-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02419-2

Search

Quick links