Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

TTC22 promotes m6A-mediated WTAP expression and colon cancer metastasis in an RPL4 binding-dependent pattern

Abstract

WTAP, an essential component of the RNA N-6-methyladenosine (m6A) modification complex, guides METLL3-METLL14 heteroduplexes to target RNAs in the nuclear speckles of mammalian cells. Here, we show that TTC22 is widely coexpressed with WTAP and FTO in many human tissues by mining Genotype-Tissue Expression (GTEx) datasets. Our results indicate that the direct interaction of TTC22 with 60S ribosomal protein L4 (RPL4) promotes the binding of WTAP mRNA to RPL4, enhances the stability and translation efficiency of WTAP mRNA, and consequently increases the level of WTAP protein. Also, WTAP mRNA itself is an m6A target and YTHDF1 is characterized as an essential m6A binding protein interacting with m6A-modified WTAP mRNA. TTC22 triggers a positive feedback loop between WTAP expression and WTAP mRNA m6A modification, leading to an increased m6A level in total RNA. The knockdown of RPL4, WTAP, or YTHDF1 expression diminishes the TTC22-induced increase in the m6A level of total RNA. Thus, TTC22 caused dramatic expression changes in genes related to metabolic pathways, ribosomal biogenesis, the RNA spliceosome, and microorganism infections. Importantly, TTC22 upregulates the expression of SNAI1 by increasing m6A level and thus promotes lung metastases of colon cancer cells in mice. In conclusion, our study showed that TTC22 upregulates WTAP and SNAI1 expression, which contributes to TTC22-induced colon cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Effects of TTC22 on the m6A level of total RNA in colon cancer cell lines.
Fig. 2: Effects of WTAP on TTC22-induced m6A modification of total RNA.
Fig. 3: Effects of changes in TTC22 and YTHDF1 expression on the levels of m6A-modified WTAP mRNA and WTAP protein.
Fig. 4: Characterization of the TTC22-RPL4 interaction and its effect on WTAP expression in various cell lines.
Fig. 5: Comparisons of the TTC22-RPL4 binding potential of various mutants of the TTC22 and RPL4 proteins.
Fig. 6: Effects of TTC22 on the level of SNAI1 expression in colon cancer cells.
Fig. 7: Effects of stable changes in TTC22 expression on the migration and lung metastasis of colon cancer cells.

Data availability

The original contributions represented in the study are included in the article/Supplemental Tables S1–S5

References

  1. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013;8:176–89.

    CAS  PubMed  Article  Google Scholar 

  2. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Wang X, Huang J, Zou T, Yin P. Human m6A writers: Two subunits, 2 roles. RNA Biol.2017;14:300–4.

    PubMed  PubMed Central  Article  Google Scholar 

  4. Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, et al. Identification of Wilms’ tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 2013;288:33292–302.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. McFadden MJ, Horner SMN. N6-Methyladenosine regulates host responses to viral infection. Trends Biochem Sci. 2021;46:366–77.

    CAS  PubMed  Article  Google Scholar 

  6. Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019;10:4892.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Xiang M, Liu W, Tian W, You A, Deng D. RNA N-6-methyladenosine enzymes and resistance of cancer cells to chemotherapy and radiotherapy. Epigenomics. 2020;12:801–9.

    CAS  PubMed  Article  Google Scholar 

  8. Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015;347:1002–6.

    CAS  PubMed  Article  Google Scholar 

  9. Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Capalbo L, Bassi ZI, Geymonat M, Todesca S, Copoiu L, Enright AJ, et al. The midbody interactome reveals unexpected roles for PP1 phosphatases in cytokinesis. Nat Commun. 2019;10:4513.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Soerensen M, Li W, Debrabant B, Nygaard M, Mengel-From J, Frost M, et al. Epigenome-wide exploratory study of monozygotic twins suggests differentially methylated regions to associate with hand grip strength. Biogerontology. 2019;20:627–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Chung DD, Zhang W, Jatavallabhula K, Barrington A, Jung J, Aldave AJ. Alterations in GRHL2-OVOL2-ZEB1 axis and aberrant activation of Wnt signaling lead to altered gene transcription in posterior polymorphous corneal dystrophy. Exp Eye Res. 2019;188:107696.

    CAS  PubMed  Article  Google Scholar 

  14. Tian W, Du Y, Ma Y, Zhang BZ, Gu L, Zhou J, et al. miR663a-TTC22V1 axis inhibits colon cancer metastasis. Oncol Rep. 2019;41:1718–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang Z, Li C, Kang B, Gao G, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.

    CAS  Article  Google Scholar 

  17. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C-M, Li CJ, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    CAS  PubMed  Article  Google Scholar 

  18. Niu Y, Zhao X, Wu YS, Li MM, Wang XJ, Yang YG. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Genomics Proteom Bioinform. 2013;11:8–17.

    CAS  Article  Google Scholar 

  19. Liu J, Zhao X, Wu Y-S, Li M-M, Wang X-J, Yang Y-G. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–95.

    CAS  PubMed  Article  Google Scholar 

  20. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    PubMed  Article  CAS  Google Scholar 

  21. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 2015;161:1388–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Zeytuni N, Zarivach R. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure. 2012;20:397–405.

    CAS  PubMed  Article  Google Scholar 

  23. Pillet B, García-Gómez JJ, Pausch P, Falquet L, Bange G, de la Cruz J, Kressler D. The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its nuclear Pre-60S assembly site. PLoS Genet. 2015;11:e1005565.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. He X, Li YH, Dai M-S, Sun X-X. Ribosomal protein L4 is a novel regulator of the MDM2-p53 loop. Oncotarget. 2016;7:16217–26.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Stransky N, Ghandi M, Kryukov GV, Garraway LA, Lehár J, Liu M, et al. Pharmacogenomic agreement between two cancer cell line data sets. Nature. 2015;528:84–87.

    CAS  PubMed Central  Article  Google Scholar 

  27. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10:2065.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    CAS  PubMed  Article  Google Scholar 

  29. Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 2012;8:e1002732.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Ping XL, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Yang YCT, Di C, Hu B, Zhou M, Liu Y, Song N, et al. CLIPdb: a CLIP-seq database for protein-RNA interactions. BMC Genomics. 2015;16:51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Yang X, Yang Y, Sun BF, Chen YS, Xu JW, Lai WY, et al. Cytoplasmic m 6 A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci Adv. 2018;4:eaar8263.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Sorci M, Ianniello Z, Cruciani S, Larivera S, Ginistrelli LC, Capuano E, et al. METTL3 regulates WTAP protein homeostasis. Cell Death Dis. 2018;9:796.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Miao C, Shi W, Xiong Y, Yu H, Zhang X, Qin M, et al. MicroRNA-663 activates the canonical Wnt signaling through the adenomatous polyposis coli suppression. Immunol Lett. 2015;166:45–54.

    CAS  PubMed  Article  Google Scholar 

  37. Tian W, Du YT, Ma YW, Gu LK, Zhou J, Deng DJ. MALAT1-miR663a negative feedback loop in colon cancer cell functions through direct miRNA-lncRNA binding. Cell Death Dis. 2018;9:857.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Shen CL, Liu CD, You RI, Ching YH, Liang J, Ke L, et al. Ribosome protein L4 is essential for Epstein-Barr virus nuclear antigen 1 function. Proc Natl Acad Sci USA. 2016;113:2229–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, et al. Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc. 2017;12:828–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    CAS  PubMed  Article  Google Scholar 

  41. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, et al. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013;23:720–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Pringle ES, McCormick C, Cheng Z. Polysome profiling analysis of mRNA and associated proteins engaged in translation. Curr Protoc Mol Biol. 2019;125:e792019.

    Article  CAS  Google Scholar 

  43. Ma WR, Qiao JL, Zhou J, Gu L, Deng DJ. Characterization of novel LncRNA P14AS as a pretector of ANRIL through AUF1 binding in human cells. Mol Cancer. 2020;19:42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Xiao-Xin Sun from Oregon Health & Science University for kindly providing us with plasmids containing full-length RPL4 and four RPL4 truncation mutants. We also thank Dr. Shengyan Xiang from Moffitt Cancer Center, USA for English language editing.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81372592) and from Beijing Hospitals Authority’ Mission Plan (SML20191101) to DD and by a grant from the Peking University Medicine Fund of Fostering Young Scholars’ Scientific & Technological Innovation and the Fundamental Research Funds for the Central Universities (BMU2020PY005) to WT. An Open access license has not been selected.

Author information

Authors and Affiliations

Authors

Contributions

DJD was responsible for designing the study, analyzing various RNA-seq datasets, interpreting the results, obtaining the main financial support, and writing the manuscript. WT was responsible for performing part of the experiments, interpreting the results, obtaining partial financial support, and writing the manuscript. ABY was responsible for performing most experiments and interpreting the results. HFY and LKG contributed to the animal experiments. JZ analyzed the expression levels of the TTC22 and WTAP genes in human tissue samples.

Corresponding authors

Correspondence to Wei Tian or Dajun Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, A., Tian, W., Yuan, H. et al. TTC22 promotes m6A-mediated WTAP expression and colon cancer metastasis in an RPL4 binding-dependent pattern. Oncogene 41, 3925–3938 (2022). https://doi.org/10.1038/s41388-022-02402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02402-x

Further reading

Search

Quick links