Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation

Abstract

EGLN1, EGLN2 and EGLN3 are proline hydroxylase whose main function is the regulation of the HIF factors. They work as oxygen sensors and are the main responsible of HIFα subunits degradation in normoxia. Being their activity strictly oxygen-dependent, when oxygen tension lowers, their control on HIFα is released, leading to activation of systemic and cellular response to hypoxia. However, EGLN family members activity is not limited to HIF modulation, but it includes the regulation of essential mechanisms for cell survival, cell cycle metabolism, proliferation and transcription. This is due to their reported hydroxylase activity on a number of non-HIF targets and sometimes to hydroxylase-independent functions. For these reasons, EGLN enzymes appear fundamental for development and progression of different cancer types, playing either a tumor-suppressive or a tumor-promoting role, according to EGLN isoform and to tumor context. Notably, EGLN1, the most studied isoform, has been shown to have also a central role in tumor micro-environment modulation, mediating CAF activation and impairing HIF1α -related angiogenesis, thus covering an important function in cancer metastasis promotion. Considering the recent knowledge acquired on EGLNs, the possibility to target these enzymes for cancer treatment is emerging. However, due to their multifaceted and controversial roles in different cancer types, the use of EGLN inhibitors as anti-cancer drugs should be carefully evaluated in each context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oxygen-dependent HIF regulation.
Fig. 2: EGLN proteins domains and post-translational modifications.
Fig. 3: Overview of mechanisms regulating EGLNs.
Fig. 4: Overview of the intracellular pathways modulated by EGLN enzymes.
Fig. 5: Different roles of EGLN isoforms in different cancer types.
Fig. 6: EGLN1 role in the tumor microenvironment.

Similar content being viewed by others

References

  1. Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30:393–402.

    Article  CAS  PubMed  Google Scholar 

  2. Ivan M, Kaelin WG Jr. The EGLN-HIF O(2)-sensing system: multiple inputs and feedbacks. Mol Cell. 2017;66:772–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43–54.

    Article  CAS  PubMed  Google Scholar 

  4. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. Embo J. 2001;20:5197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.

    Article  CAS  PubMed  Google Scholar 

  6. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    Article  CAS  PubMed  Google Scholar 

  7. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA. 2000;97:10430–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423–7.

    Article  CAS  PubMed  Google Scholar 

  9. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  10. Jokilehto T, Jaakkola PM. The role of HIF prolyl hydroxylases in tumour growth. J Cell Mol Med. 2010;14:758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brüne B. Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell. 2003;14:3470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koivunen P, Tiainen P, Hyvärinen J, Williams KE, Sormunen R, Klaus SJ, et al. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem. 2007;282:30544–52.

    Article  CAS  PubMed  Google Scholar 

  13. Jokilehto T, Rantanen K, Luukkaa M, Heikkinen P, Grenman R, Minn H, et al. Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness. Clin Cancer Res. 2006;12:1080–7.

    Article  CAS  PubMed  Google Scholar 

  14. To KK, Huang LE. Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem. 2005;280:38102–7.

    Article  CAS  PubMed  Google Scholar 

  15. Song D, Li LS, Heaton-Johnson KJ, Arsenault PR, Master SR, Lee FS. Prolyl hydroxylase domain protein 2 (PHD2) binds a Pro-Xaa-Leu-Glu motif, linking it to the heat shock protein 90 pathway. J Biol Chem. 2013;288:9662–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lieb ME, Menzies K, Moschella MC, Ni R, Taubman MB. Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem Cell Biol. 2002;80:421–6.

    Article  CAS  PubMed  Google Scholar 

  17. Takada M, Zhuang M, Inuzuka H, Zhang J, Zurlo G, Zhang Q. EglN2 contributes to triple negative breast tumorigenesis by functioning as a substrate for the FBW7 tumor suppressor. Oncotarget. 2017;8:6787–95.

    Article  PubMed  Google Scholar 

  18. Zhang L, Peng S, Dai X, Gan W, Nie X, Wei W, et al. Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Lett. 2017;390:11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458–65.

    Article  CAS  PubMed  Google Scholar 

  20. Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J. 2003;22:4082–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chowdhury R, Leung IK, Tian YM, Abboud MI, Ge W, Domene C, et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun. 2016;7:12673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006;26:8336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leinonen H, Rossi M, Salo AM, Tiainen P, Hyvärinen J, Pitkänen M, et al. Lack of P4H-TM in mice results in age-related retinal and renal alterations. Hum Mol Genet. 2016;25:3810–23.

    Article  CAS  PubMed  Google Scholar 

  24. Leinonen H, Koivisto H, Lipponen HR, Matilainen A, Salo AM, Dimova EY, et al. Null mutation in P4h-tm leads to decreased fear and anxiety and increased social behavior in mice. Neuropharmacology. 2019;153:63–72.

    Article  CAS  PubMed  Google Scholar 

  25. Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200.

    Article  CAS  PubMed  Google Scholar 

  26. Bryant JD, Brown MC, Dobrikov MI, Dobrikova EY, Gemberling SL, Zhang Q, et al.Regulation of hypoxia-inducible factor 1α during hypoxia by DAP5-induced translation of PHD2. Mol Cell Biol. 2018;38:e00647–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell. 2004;117:941–52.

    Article  CAS  PubMed  Google Scholar 

  28. Di Conza G, Trusso Cafarello S, Loroch S, Mennerich D, Deschoemaeker S, Di Matteo M, et al. The mTOR and PP2A pathways regulate PHD2 phosphorylation to fine-tune HIF1α levels and colorectal cancer cell survival under hypoxia. Cell Rep. 2017;18:1699–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li Z, Zhou W, Zhang Y, Sun W, Yung MMH, Sun J, et al. ERK regulates HIF1α-mediated platinum resistance by directly targeting PHD2 in ovarian cancer. Clin Cancer Res. 2019;25:5947–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ortmann B, Bensaddek D, Carvalhal S, Moser SC, Mudie S, Griffis ER, et al. CDK-dependent phosphorylation of PHD1 on serine 130 alters its substrate preference in cells. J Cell Sci. 2016;129:191–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Oh ET, Kim CW, Kim SJ, Lee JS, Hong SS, Park HJ. Docetaxel induced-JNK2/PHD1 signaling pathway increases degradation of HIF-1α and causes cancer cell death under hypoxia. Sci Rep. 2016;6:27382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Núñez-O'Mara A, Gerpe-Pita A, Pozo S, Carlevaris O, Urzelai B, Lopitz-Otsoa F, et al. PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity. J Cell Sci. 2015;128:40–9.

    PubMed  Google Scholar 

  33. Briggs KJ, Koivunen P, Cao S, Backus KM, Olenchock BA, Patel H, et al. Paracrine induction of HIF by glutamate in breast cancer: EglN1 senses cysteine. Cell. 2016;166:126–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee G, Won HS, Lee YM, Choi JW, Oh TI, Jang JH, et al. Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci Rep. 2016;6:18928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dey A, Prabhudesai S, Zhang Y, Rao G, Thirugnanam K, Hossen MN, et al. Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2. Sci Adv. 2020;6:eaaz8534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kozlova N, Mennerich D, Samoylenko A, Dimova EY, Koivunen P, Biterova E, et al. The pro-oncogenic adaptor CIN85 acts as an inhibitory binding partner of hypoxia-inducible factor prolyl hydroxylase 2. Cancer Res. 2019;79:4042–56.

    Article  CAS  PubMed  Google Scholar 

  37. Lee SH, Bae SC, Kim KW, Lee YM. RUNX3 inhibits hypoxia-inducible factor-1α protein stability by interacting with prolyl hydroxylases in gastric cancer cells. Oncogene. 2014;33:1458–67.

    Article  CAS  PubMed  Google Scholar 

  38. Foxler DE, Bridge KS, James V, Webb TM, Mee M, Wong SC, et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat Cell Biol. 2012;14:201–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ozer A, Wu LC, Bruick RK. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA. 2005;102:7481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21:498–510.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng F, Chen J, Zhang X, Wang Z, Lin X, Huang H, et al. The HIF-1α antisense long non-coding RNA drives a positive feedback loop of HIF-1α mediated transactivation and glycolysis. Nat Commun. 2021;12:1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem. 2007;282:1788–96.

    Article  CAS  PubMed  Google Scholar 

  44. Hagen T, Taylor CT, Lam F, Moncada S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science. 2003;302:1975–8.

    Article  CAS  PubMed  Google Scholar 

  45. Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WDJ, Abboud MI, et al. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. Elife. 2019;8:e46490.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem. 2006;281:15215–26.

    Article  CAS  PubMed  Google Scholar 

  47. Chan MC, Ilott NE, Schödel J, Sims D, Tumber A, Lippl K, et al. Tuning the transcriptional response to hypoxia by inhibiting hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. J Biol Chem. 2016;291:20661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miikkulainen P, Högel H, Rantanen K, Suomi T, Kouvonen P, Elo LL, et al. HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer Metab. 2017;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen N, Rinner O, Czernik D, Nytko KJ, Zheng D, Stiehl DP, et al. The oxygen sensor PHD3 limits glycolysis under hypoxia via direct binding to pyruvate kinase. Cell Res. 2011;21:983–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. German NJ, Yoon H, Yusuf RZ, Murphy JP, Finley LW, Laurent G, et al. PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2. Mol Cell. 2016;63:1006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zurlo G, Liu X, Takada M, Fan C, Simon JM, Ptacek TS, et al. Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic driver in triple negative breast cancer. Nat Commun. 2019;10:5177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Moser SC, Bensaddek D, Ortmann B, Maure JF, Mudie S, Blow JJ, et al. PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Dev Cell. 2013;26:381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Högel H, Miikkulainen P, Bino L, Jaakkola PM. Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Mol Cancer. 2015;14:143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Deschoemaeker S, Di Conza G, Lilla S, Martín-Pérez R, Mennerich D, Boon L, et al. PHD1 regulates p53-mediated colorectal cancer chemoresistance. EMBO Mol Med. 2015;7:1350–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ullah K, Rosendahl AH, Izzi V, Bergmann U, Pihlajaniemi T, Mäki JM, et al. Hypoxia-inducible factor prolyl-4-hydroxylase-1 is a convergent point in the reciprocal negative regulation of NF-κB and p53 signaling pathways. Sci Rep. 2017;7:17220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rodriguez J, Herrero A, Li S, Rauch N, Quintanilla A, Wynne K, et al. PHD3 regulates p53 protein stability by hydroxylating proline 359. Cell Rep. 2018;24:1316–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu Y, Gao Q, Xue Y, Li X, Xu L, Li C, et al. Prolyl hydroxylase 3 stabilizes the p53 tumor suppressor by inhibiting the p53-MDM2 interaction in a hydroxylase-independent manner. J Biol Chem. 2019;294:9949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA. 2006;103:18154–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fitzpatrick SF, Fábián Z, Schaible B, Lenihan CR, Schwarzl T, Rodriguez J, et al. Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner. Biochem Biophys Res Commun. 2016;474:579–86.

    Article  CAS  PubMed  Google Scholar 

  61. Xie X, Xiao H, Ding F, Zhong H, Zhu J, Ma N, et al. Over-expression of prolyl hydroxylase-1 blocks NF-κB-mediated cyclin D1 expression and proliferation in lung carcinoma cells. Cancer Genet. 2014;207:188–94.

    Article  PubMed  CAS  Google Scholar 

  62. Zheng X, Zhai B, Koivunen P, Shin SJ, Lu G, Liu J, et al. Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 2014;28:1429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mikhaylova O, Ignacak ML, Barankiewicz TJ, Harbaugh SV, Yi Y, Maxwell PH, et al. The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol. 2008;28:2701–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang J, Wang C, Chen X, Takada M, Fan C, Zheng X, et al. EglN2 associates with the NRF1-PGC1α complex and controls mitochondrial function in breast cancer. Embo J. 2015;34:2953–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Venkat Ramani MK, Yang W, Irani S, Zhang Y. Simplicity is the ultimate sophistication-crosstalk of post-translational modifications on the RNA polymerase II. J Mol Biol. 2021;433:166912.

    Article  CAS  PubMed  Google Scholar 

  66. Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, et al. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci USA. 2003;100:2706–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Erber L, Luo A, Chen Y. Targeted and interactome proteomics revealed the role of PHD2 in regulating BRD4 proline hydroxylation. Mol Cell Proteom. 2019;18:1772–81.

    Article  CAS  Google Scholar 

  68. Liu X, Simon JM, Xie H, Hu L, Wang J, Zurlo G, et al. Genome-wide screening identifies SFMBT1 as an oncogenic driver in cancer with VHL Loss. Mol Cell. 2020;77:1294–306.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo J, Chakraborty AA, Liu P, Gan W, Zheng X, Inuzuka H, et al. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science. 2016;353:929–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. D'Hulst G, Soro-Arnaiz I, Masschelein E, Veys K, Fitzgerald G, Smeuninx B, et al. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase. Nat Commun. 2020;11:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garvalov BK, Foss F, Henze AT, Bethani I, Gräf-Höchst S, Singh D, et al. PHD3 regulates EGFR internalization and signalling in tumours. Nat Commun. 2014;5:5577.

    Article  CAS  PubMed  Google Scholar 

  72. Kozlova N, Wottawa M, Katschinski DM, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885–98.

    Article  PubMed  Google Scholar 

  73. Lee SB, Ko A, Oh YT, Shi P, D'Angelo F, Frangaj B, et al. Proline hydroxylation primes protein kinases for autophosphorylation and activation. Mol Cell. 2020;79:376–89.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reggiani F, Sauta E, Torricelli F, Zanetti E, Tagliavini E, Santandrea G, et al. An integrative functional genomics approach reveals EGLN1 as a novel therapeutic target in KRAS mutated lung adenocarcinoma. Mol Cancer. 2021;20:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Price C, Gill S, Ho ZV, Davidson SM, Merkel E, McFarland JM, et al. Genome-wide interrogation of human cancers identifies EGLN1 dependency in clear cell ovarian cancers. Cancer Res. 2019;79:2564–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Steinhoff A, Pientka FK, Möckel S, Kettelhake A, Hartmann E, Köhler M, et al. Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem Biophys Res Commun. 2009;387:705–11.

    Article  CAS  PubMed  Google Scholar 

  77. Jokilehto T, Högel H, Heikkinen P, Rantanen K, Elenius K, Sundström J, et al. Retention of prolyl hydroxylase PHD2 in the cytoplasm prevents PHD2-induced anchorage-independent carcinoma cell growth. Exp Cell Res. 2010;316:1169–78.

    Article  CAS  PubMed  Google Scholar 

  78. Couvelard A, Deschamps L, Rebours V, Sauvanet A, Gatter K, Pezzella F, et al. Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH Is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res. 2008;14:6634–9.

    Article  CAS  PubMed  Google Scholar 

  79. Luukkaa M, Jokilehto T, Kronqvist P, Vahlberg T, Grénman R, Jaakkola P, et al. Expression of the cellular oxygen sensor PHD2 (EGLN-1) predicts radiation sensitivity in squamous cell cancer of the head and neck. Int J Radiat Biol. 2009;85:900–8.

    Article  CAS  PubMed  Google Scholar 

  80. Bur H, Haapasaari KM, Turpeenniemi-Hujanen T, Kuittinen O, Auvinen P, Marin K, et al. Strong prolyl hydroxylase domain 1 expression predicts poor outcome in radiotherapy-treated patients with classical Hodgkin's lymphoma. Anticancer Res. 2018;38:329–36.

    CAS  PubMed  Google Scholar 

  81. Andersen S, Donnem T, Stenvold H, Al-Saad S, Al-Shibli K, Busund LT, et al. Overexpression of the HIF hydroxylases PHD1, PHD2, PHD3 and FIH are individually and collectively unfavorable prognosticators for NSCLC survival. PLoS ONE. 2011;6:e23847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Giatromanolaki A, Koukourakis MI, Pezzella F, Turley H, Sivridis E, Bouros D. et al. Expression of prolyl-hydroxylases PHD-1, 2 and 3 and of the asparagine hydroxylase FIH in non-small cell lung cancer relates to an activated HIF pathway. Cancer Lett. 2008;262:87–93.

    Article  CAS  PubMed  Google Scholar 

  83. Koren A, Rijavec M, Krumpestar T, Kern I, Sadikov A, Čufer T, et al. Gene expression levels of the prolyl hydroxylase domain proteins PHD1 and PHD2 but not PHD3 are decreased in primary tumours and correlate with poor prognosis of patients with surgically resected non-small-cell lung cancer. Cancers. 2021;13:2309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Klotzsche-von Ameln A, Muschter A, Mamlouk S, Kalucka J, Prade I, Franke K, et al. Inhibition of HIF prolyl hydroxylase-2 blocks tumor growth in mice through the antiproliferative activity of TGFβ. Cancer Res. 2011;71:3306–16.

    Article  CAS  PubMed  Google Scholar 

  85. Chen S, Zhang J, Li X, Luo X, Fang J, Chen H. The expression of prolyl hydroxylase domain enzymes are up-regulated and negatively correlated with Bcl-2 in non-small cell lung cancer. Mol Cell Biochem. 2011;358:257–63.

    Article  CAS  PubMed  Google Scholar 

  86. Dopeso H, Jiao HK, Cuesta AM, Henze AT, Jurida L, Kracht M, et al. PHD3 controls lung cancer metastasis and resistance to EGFR inhibitors through TGFα. Cancer Res. 2018;78:1805–19.

    Article  CAS  PubMed  Google Scholar 

  87. Tseng CW, Kuo WH, Chan SH, Chan HL, Chang KJ, Wang LH. Transketolase regulates the metabolic switch to control breast cancer cell metastasis via the α-ketoglutarate signaling pathway. Cancer Res. 2018;78:2799–812.

    Article  CAS  PubMed  Google Scholar 

  88. Bordoli MR, Stiehl DP, Borsig L, Kristiansen G, Hausladen S, Schraml P, et al. Prolyl-4-hydroxylase PHD2- and hypoxia-inducible factor 2-dependent regulation of amphiregulin contributes to breast tumorigenesis. Oncogene. 2011;30:548–60.

    Article  CAS  PubMed  Google Scholar 

  89. Di Conza G, Trusso Cafarello S, Zheng X, Zhang Q, Mazzone M. PHD2 targeting overcomes breast cancer cell death upon glucose starvation in a PP2A/B55α-mediated manner. Cell Rep. 2017;18:2836–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Naba A, Clauser KR, Lamar JM, Carr SA, Hynes RO. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. Elife. 2014;3:e01308.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang Q, Gu J, Li L, Liu J, Luo B, Cheung HW, et al. Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase. Cancer Cell. 2009;16:413–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peurala E, Koivunen P, Bloigu R, Haapasaari KM, Jukkola-Vuorinen A. Expressions of individual PHDs associate with good prognostic factors and increased proliferation in breast cancer patients. Breast Cancer Res Treat. 2012;133:179–88.

    Article  CAS  PubMed  Google Scholar 

  93. Rawluszko AA, Bujnicka KE, Horbacka K, Krokowicz P, Jagodziński PP. Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer. BMC Cancer. 2013;13:526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Xie G, Zheng L, Ou J, Huang H, He J, Li J, et al. Low expression of prolyl hydroxylase 2 is associated with tumor grade and poor prognosis in patients with colorectal cancer. Exp Biol Med. 2012;237:860–6.

    Article  CAS  Google Scholar 

  95. Wang L, Niu Z, Wang X, Li Z, Liu Y, Luo F, et al. PHD2 exerts anti-cancer and anti-inflammatory effects in colon cancer xenografts mice via attenuating NF-κB activity. Life Sci. 2020;242:117167.

    Article  CAS  PubMed  Google Scholar 

  96. Vidimar V, Licona C, Cerón-Camacho R, Guerin E, Coliat P, Venkatasamy A, et al. A redox ruthenium compound directly targets PHD2 and inhibits the HIF1 pathway to reduce tumor angiogenesis independently of p53. Cancer Lett. 2019;440-441:145–55.

    Article  CAS  PubMed  Google Scholar 

  97. Erez N, Milyavsky M, Eilam R, Shats I, Goldfinger N, Rotter V. Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res. 2003;63:8777–83.

    CAS  PubMed  Google Scholar 

  98. Guan D, Li C, Li Y, Wang G, Gao F. The DpdtbA induced EMT inhibition in gastric cancer cell lines was through ferritinophagy-mediated activation of p53 and PHD2/hif-1α pathway. J Inorg Biochem. 2021;218:111413.

    Article  CAS  PubMed  Google Scholar 

  99. Zhen L, Shijie N, Shuijun Z. Tumor PHD2 expression is correlated with clinical features and prognosis of patients with HCC receiving liver resection. Medicine. 2014;93:e179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guo J, Lan Z. PHD2 acts as an oncogene through activation of Ras/Raf/MEK/ERK and JAK1/STAT3 pathways in human hepatocellular carcinoma cells. Artif Cells Nanomed Biotechnol. 2020;48:37–45.

    Article  CAS  PubMed  Google Scholar 

  101. Heindryckx F, Kuchnio A, Casteleyn C, Coulon S, Olievier K, Colle I, et al. Effect of prolyl hydroxylase domain-2 haplodeficiency on the hepatocarcinogenesis in mice. J Hepatol. 2012;57:61–8.

    Article  CAS  PubMed  Google Scholar 

  102. Ma M, Hua S, Li G, Wang S, Cheng X, He S, et al. Prolyl hydroxylase domain protein 3 and asparaginyl hydroxylase factor inhibiting HIF-1 levels are predictive of tumoral behavior and prognosis in hepatocellular carcinoma. Oncotarget. 2017;8:12983–3002.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shi M, Dai WQ, Jia RR, Zhang QH, Wei J, Wang YG, et al. APC(CDC20)-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Lett. 2021;496:144–55.

    Article  CAS  PubMed  Google Scholar 

  104. Tanaka T, Li TS, Urata Y, Goto S, Ono Y, Kawakatsu M, et al. Increased expression of PHD3 represses the HIF-1 signaling pathway and contributes to poor neovascularization in pancreatic ductal adenocarcinoma. J Gastroenterol. 2015;50:975–83.

    Article  CAS  PubMed  Google Scholar 

  105. Su Y, Loos M, Giese N, Hines OJ, Diebold I, Görlach A, et al. PHD3 regulates differentiation, tumour growth and angiogenesis in pancreatic cancer. Br J Cancer. 2010;103:1571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Su Y, Loos M, Giese N, Metzen E, Büchler MW, Friess H, et al. Prolyl hydroxylase-2 (PHD2) exerts tumor-suppressive activity in pancreatic cancer. Cancer. 2012;118:960–72.

    Article  CAS  PubMed  Google Scholar 

  107. Xiang J, Hu Q, Qin Y, Ji S, Xu W, Liu W, et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. Cell Death Dis. 2018;9:321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Maher ER. Genomics and epigenomics of renal cell carcinoma. Semin Cancer Biol. 2013;23:10–7.

    Article  CAS  PubMed  Google Scholar 

  109. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45:860–7.

    Article  CAS  PubMed  Google Scholar 

  110. Choueiri TK, Kaelin WG Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med. 2020;26:1519–30.

    Article  CAS  PubMed  Google Scholar 

  111. Jubb AM, Pham TQ, Hanby AM, Frantz GD, Peale FV, Wu TD, et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1alpha, and carbonic anhydrase IX in human tumours. J Clin Pathol. 2004;57:504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. del Peso L, Castellanos MC, Temes E, Martin-Puig S, Cuevas Y, Olmos G, et al. The von Hippel Lindau/hypoxia-inducible factor (HIF) pathway regulates the transcription of the HIF-proline hydroxylase genes in response to low oxygen. J Biol Chem. 2003;278:48690–5.

    Article  PubMed  CAS  Google Scholar 

  113. Zacharias NM, Wang L, Maity T, Li L, Millward SW, Karam JA, et al. Prolyl Hydroxylase 3 knockdown accelerates VHL-mutant kidney cancer growth in vivo. Int J Mol Sci. 2021;22:2849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Tanaka T, Torigoe T, Hirohashi Y, Sato E, Honma I, Kitamura H, et al. Hypoxia-inducible factor (HIF)-independent expression mechanism and novel function of HIF prolyl hydroxylase-3 in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:503–13.

    Article  CAS  PubMed  Google Scholar 

  115. Apanovich N, Apanovich P, Mansorunov D, Kuzevanova A, Matveev V, Karpukhin A. The choice of candidates in survival markers based on coordinated gene expression in renal cancer. Front Oncol. 2021;11:615787.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yi Y, Mikhaylova O, Mamedova A, Bastola P, Biesiada J, Alshaikh E, et al. von Hippel-Lindau-dependent patterns of RNA polymerase II hydroxylation in human renal clear cell carcinomas. Clin Cancer Res. 2010;16:5142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Madsen CD, Pedersen JT, Venning FA, Singh LB, Moeendarbary E, Charras G, et al. Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour stiffness and metastasis. EMBO Rep. 2015;16:1394–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kuchnio A, Moens S, Bruning U, Kuchnio K, Cruys B, Thienpont B, et al. The cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancer-associated fibroblasts. Cell Rep. 2015;12:992–1005.

    Article  CAS  PubMed  Google Scholar 

  119. Chan DA, Kawahara TL, Sutphin PD, Chang HY, Chi JT, Giaccia AJ. Tumor vasculature is regulated by PHD2-mediated angiogenesis and bone marrow-derived cell recruitment. Cancer Cell. 2009;15:527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mazzone M, Dettori D, de Oliveira RL, Loges S, Schmidt T, Jonckx B, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell. 2009;136:839–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Takeda K, Cowan A, Fong GH. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation. 2007;116:774–81.

    Article  CAS  PubMed  Google Scholar 

  122. Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, Selak MA, et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene. 2009;28:4009–21.

    Article  CAS  PubMed  Google Scholar 

  123. Klotzsche-von Ameln A, Muschter A, Heimesaat MM, Breier G, Wielockx B. HIF prolyl hydroxylase-2 inhibition diminishes tumor growth through matrix metalloproteinase-induced TGFβ activation. Cancer Biol Ther. 2012;13:216–23.

    Article  CAS  PubMed  Google Scholar 

  124. Akizawa T, Macdougall IC, Berns JS, Bernhardt T, Staedtler G, Taguchi M, et al. Long-term efficacy and safety of molidustat for anemia in chronic kidney disease: DIALOGUE extension studies. Am J Nephrol. 2019;49:271–80.

    Article  CAS  PubMed  Google Scholar 

  125. Barratt J, Andric B, Tataradze A, Schömig M, Reusch M, Valluri U, et al. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: a Phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrol Dial Transplant. 2021;36:1616–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Leite de Oliveira R, Deschoemaeker S, Henze AT, Debackere K, Finisguerra V, Takeda Y, et al. Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell. 2012;22:263–77.

    Article  CAS  PubMed  Google Scholar 

  127. Fujimoto TN, Colbert LE, Huang Y, Molkentine JM, Deorukhkar A, Baseler L, et al. Selective EGLN inhibition enables ablative radiotherapy and improves survival in unresectable pancreatic cancer. Cancer Res. 2019;79:2327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research leading to this work has received funding from AIRC under IG 2021 - ID. 26377 project – P.I. Sancisi Valentina. Valentina Sancisi is funded by the Italian Ministry of Health through Bando per la Valorizzazione della Ricerca in ambito oncologico 2020 – Fondi 5 per Mille 2018. Giulia Gobbi is funded by the Italian Ministry of Health through Bando per la Valorizzazione della Ricerca in ambito oncologico 2019 – Fondi 5 per Mille 2017. Francesca Reggiani is supported by Fondazione Umberto Veronesi (FUV). This study was partially supported by Italian Ministry of Health – Ricerca Corrente Annual Program 2023.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VS and SS; literature review: SS, GG, FR, and VS; Writing and revising the paper: SS, GG, FR, AC, and VS.

Corresponding author

Correspondence to Valentina Sancisi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strocchi, S., Reggiani, F., Gobbi, G. et al. The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation. Oncogene 41, 3665–3679 (2022). https://doi.org/10.1038/s41388-022-02378-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02378-8

This article is cited by

Search

Quick links