Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downregulation of HINFP induces senescence-associated secretory phenotype to promote metastasis in a non-cell-autonomous manner in bladder cancer

Abstract

Transcription dysregulation is a salient characteristic of bladder cancer (BC), but no appropriate therapeutic target for it has been established. Here, we found that heterogeneous downregulation of histone H4 transcription factor (HINFP) was associated with senescence in BC tissues and that lower HINFP expression could predict an unfavorable outcome in BC patients. Knockout of HINFP transcriptionally inhibited H1F0 and H1FX to trigger DNA damage, consequently inducing cell senescence to repress the proliferation and growth of BC cells. However, the senescence-associated secretory phenotype, characterized by increases in MMP1/3, enhances the invasion and metastasis of non-senescent BC cells. Histone deacetylase inhibitors (HDACis) could efficiently eliminate the senescent cells induced by HINFP knockout to suppress the invasion and metastasis of BC cells. Our study suggests that HDACis, widely used in multiple cancer types in a clinical context, may also benefit BC patients with metastases induced by cell senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HINFP is required for BC cell growth.
Fig. 2: Knockout of HINFP induces senescence in BC cells by transcriptionally regulating H1F0 and H1FX.
Fig. 3: Downregulation of HINFP was associated with senescence in BC tissues, and lower expression of HINFP predicted an unfavorable prognosis in BC patients.
Fig. 4: Knockout of HINFP activates the SASP (MMPs) in BC cells via H1F0 and H1FX.
Fig. 5: HINFP-KO promotes the invasion and metastasis of BC cells in a non-cell-autonomous manner.
Fig. 6: Clearance of HINFP-KO-induced senescent cells by HDACis suppresses the invasion and metastasis of BC cells.
Fig. 7: The model proposed in this study.

Similar content being viewed by others

Data availability

The RNA-Seq data were deposited in the Genome Sequence Archive for Humans with accession code HRA001354. Other data used for the current study are available from the corresponding author upon reasonable request.

References

  1. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmstrom PU, Choi W, et al. Bladder cancer. Lancet. 2016;388:2796–810.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  Google Scholar 

  3. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol. 2017;71:96–108.

    Article  Google Scholar 

  4. von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23:4602–8.

    Article  Google Scholar 

  5. Stein JP, Skinner DG. Radical cystectomy for invasive bladder cancer: long-term results of a standard procedure. World J Urol. 2006;24:296–304.

    Article  Google Scholar 

  6. Guo Y, Yuan X, Li K, Dai M, Zhang L, Wu Y, et al. GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer. Cell Death Differ. 2020;27:1862–77.

    Article  CAS  Google Scholar 

  7. Schmitz-Drager BJ, Schulz WA, Jurgens B, Gerharz CD, van Roeyen CR, Bultel H, et al. c-myc in bladder cancer. Clinical findings and analysis of mechanism. Urol Res. 1997;25:S45–49.

    Article  CAS  Google Scholar 

  8. Zhang Z, Xie D, Li X, Wong YC, Xin D, Guan XY, et al. Significance of TWIST expression and its association with E-cadherin in bladder cancer. Hum Pathol. 2007;38:598–606.

    Article  CAS  Google Scholar 

  9. Hayden A, Douglas J, Sommerlad M, Andrews L, Gould K, Hussain S, et al. The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. Urol Oncol. 2014;32:806–14.

    Article  CAS  Google Scholar 

  10. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA. 2009;106:14016–21.

    Article  CAS  Google Scholar 

  11. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32:267–73.

    Article  CAS  Google Scholar 

  12. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  CAS  Google Scholar 

  13. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 2014;509:487–91.

    Article  CAS  Google Scholar 

  14. Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343:80–4.

    Article  CAS  Google Scholar 

  15. Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350:1096–101.

    Article  CAS  Google Scholar 

  16. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. 2015;163:1515–26.

    Article  CAS  Google Scholar 

  17. Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19:439–53.

    Article  CAS  Google Scholar 

  18. Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017;7:165–76.

    Article  CAS  Google Scholar 

  19. Sulli G, Di Micco R, d’Adda di Fagagna F. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer. 2012;12:709–20.

    Article  CAS  Google Scholar 

  20. Funayama R, Saito M, Tanobe H, Ishikawa F. Loss of linker histone H1 in cellular senescence. J Cell Biol. 2006;175:869–80.

    Article  CAS  Google Scholar 

  21. Milanovic M, Yu Y, Schmitt CA. The Senescence-Stemness Alliance—A Cancer-Hijacked Regeneration Principle. Trends Cell Biol. 2018;28:1049–61.

    Article  Google Scholar 

  22. Kim YH, Choi YW, Lee J, Soh EY, Kim JH, Park TJ. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun. 2017;8:15208.

    Article  Google Scholar 

  23. Guccini I, Revandkar A, D’Ambrosio M, Colucci M, Pasquini E, Mosole S, et al. Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell. 2021;39:68–82. e69

    Article  CAS  Google Scholar 

  24. Brooks TA, Hurley LH. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat Rev Cancer. 2009;9:849–61.

    Article  CAS  Google Scholar 

  25. Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol. 2019;21:152–61.

    Article  CAS  Google Scholar 

  26. Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020;20:89–106.

    Article  CAS  Google Scholar 

  27. Li C, Cantor WJ, Nili N, Robinson R, Fenkell L, Tran YL, et al. Arterial repair after stenting and the effects of GM6001, a matrix metalloproteinase inhibitor. J Am Coll Cardiol. 2002;39:1852–8.

    Article  CAS  Google Scholar 

  28. Wang L, Leite de Oliveira R, Huijberts S, Bosdriesz E, Pencheva N, Brunen D, et al. An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential. Cell. 2018;173:1413–25.

    Article  CAS  Google Scholar 

  29. Sardi I, Dal Canto M, Bartoletti R, Guazzelli R, Travaglini F, Montali E. Molecular genetic alterations of c-myc oncogene in superficial and locally advanced bladder cancer. Eur Urol. 1998;33:424–30.

    Article  CAS  Google Scholar 

  30. Xie R, Medina R, Zhang Y, Hussain S, Colby J, Ghule P, et al. The histone gene activator HINFP is a nonredundant cyclin E/CDK2 effector during early embryonic cell cycles. Proc Natl Acad Sci USA. 2009;106:12359–64.

    Article  CAS  Google Scholar 

  31. Ghule PN, Xie RL, Colby JL, Rivera-Perez JA, Jones SN, Lian JB, et al. Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos. Dev Biol. 2016;419:311–20.

    Article  CAS  Google Scholar 

  32. Liu LJ, Xie R, Hussain S, Lian JB, Rivera-Perez J, Jones SN, et al. Functional coupling of transcription factor HiNF-P and histone H4 gene expression during pre- and post-natal mouse development. Gene. 2011;483:1–10.

    Article  CAS  Google Scholar 

  33. Sun Y, Coppe JP, Lam EW. Cellular Senescence: The Sought or the Unwanted? Trends Mol Med. 2018;24:871–85.

    Article  CAS  Google Scholar 

  34. Sieben CJ, Sturmlechner I, van de Sluis B, van Deursen JM. Two-Step Senescence-Focused Cancer Therapies. Trends Cell Biol. 2018;28:723–37.

    Article  CAS  Google Scholar 

  35. Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 2017;108:563–9.

    Article  CAS  Google Scholar 

  36. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22:78–83.

    Article  CAS  Google Scholar 

  37. Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, et al. Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020;30:574–89.

    Article  CAS  Google Scholar 

  38. Xu Y, Zhang P, Liu Y. Chidamide tablets: HDAC inhibition to treat lymphoma. Drugs Today. 2017;53:167–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Meisongzhu Yang from SYSUCC for her help in constructing the animal models and Dr. Jietian Jin from SYSUCC for help with pathological diagnosis. This work was supported by grants from the National Key Research and Development Program of China (2021YFA1300601 to TK, 2020YFA0509400 to JP), the National Nature Science Foundation of China (NSFC) (82030090 to TK, 82073103 to ZWL, 82103264 to XCZ, 82172939 to YW, 82002917 to LWZ), and the Science and Technology Program of Guangzhou (202002020092).

Author information

Authors and Affiliations

Authors

Contributions

XZ, YW, ZWL, and TK conceived the project, designed the experiments, and wrote the manuscript. XZ assisted by YW and ZFL performed most of the experiments and analyzed the data. ZL provided BC samples. JZ, LWZ, CJ, LSZ, RZ, and JP assisted with the experiments and provided technical assistance. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Yuanzhong Wu, Zhuowei Liu or Tiebang Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, Z., Zhong, J. et al. Downregulation of HINFP induces senescence-associated secretory phenotype to promote metastasis in a non-cell-autonomous manner in bladder cancer. Oncogene 41, 3587–3598 (2022). https://doi.org/10.1038/s41388-022-02371-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02371-1

This article is cited by

Search

Quick links