Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancer methylation dynamics drive core transcriptional regulatory circuitry in pan-cancer

Abstract

Accumulating evidence has demonstrated that enhancer methylation has strong and dynamic regulatory effects on gene expression. Some transcription factors (TFs) can auto- and cross-regulate in a feed-forward manner, and cooperate with their enhancers to form core transcriptional regulatory circuitries (CRCs). However, the elaborated regulatory mechanism between enhancer methylation and CRC remains the tip of the iceberg. Here, we revealed that DNA methylation could drive the tissue-specific enhancer basal transcription and target gene expression in human cancers. By integrating methylome, transcriptome, and 3D genomic data, we identified enhancer methylation triplets (enhancer methylation-enhancer transcription-target gene expression) and dissected potential regulatory patterns within them. Moreover, we observed that cancer-specific core TFs regulated by enhancers were able to shape their enhancer methylation forming the enhancer methylation-driven CRCs (emCRCs). Further parsing of clinical implications showed rewired emCRCs could serve as druggable targets and prognostic risk markers. In summary, the integrative analysis of enhancer methylation regulome would facilitate portraying the cancer epigenomics landscape and developing the epigenetic anti-cancer approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of enhancer transcription and methylation in human cancers.
Fig. 2: Global activation of enhancer by hypomethylation in cancer samples.
Fig. 3: Inferring regulatory patterns dominated by enhancer methylation in cancers.
Fig. 4: TF is involved in enhancer methylation regulation.
Fig. 5: The potential clinical utility of emCRCs.

Similar content being viewed by others

Data availability

All the data used in the analysis can be obtained from TCGA, ENCODE, and GEO.

Code availability

The data analysis in this manuscript was conducted using custom scripts, all available at http://bio-bigdata.tech/EmethCRC.

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  2. Hegde AN, Smith SG. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. Learn Mem. 2019;26:307–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim S, Kaang B-K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med. 2017;49:e281–e281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Blackwood EM, Kadonaga JT. Going the distance: a current view of enhancer action. Science. 1998;281:60–63.

    Article  CAS  PubMed  Google Scholar 

  5. Symmons O, Uslu VV, Tsujimura T, Ruf S, Nassari S, Schwarzer W, et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 2014;24:390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000;405:486–9.

    Article  CAS  PubMed  Google Scholar 

  7. Schuijers J, Manteiga JC, Weintraub AS, Day DS, Zamudio AV, Hnisz D, et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 2018;23:349–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 2010;143:470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Domcke S, Bardet AF, Adrian Ginno P, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature. 2015;528:575–9.

    Article  CAS  PubMed  Google Scholar 

  11. Sato N, Kondo M, Arai K. The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing. Biochem Biophys Res Commun. 2006;344:845–51.

    Article  CAS  PubMed  Google Scholar 

  12. Barnett KR, Decato BE, Scott TJ, Hansen TJ, Chen B, Attalla J, et al. ATAC-Me captures prolonged DNA methylation of dynamic chromatin accessibility loci during cell fate transitions. Mol Cell. 2020;77:1350–.e1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vanzan L, Soldati H, Ythier V, Anand S, Braun SMG, Francis N, et al. High throughput screening identifies SOX2 as a super pioneer factor that inhibits DNA methylation maintenance at its binding sites. Nat Commun. 2021;12:3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Zhang D, Li Q, Liang J, Sun L, Yi X, et al. Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering. Nat Genet. 2016;48:1003–13.

    Article  CAS  PubMed  Google Scholar 

  15. Saint-André V, Federation AJ, Lin CY, Abraham BJ, Reddy J, Lee TI, et al. Models of human core transcriptional regulatory circuitries. Genome Res. 2016;26:385–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Decaesteker B, Denecker G, Van Neste C, Dolman EM, Van Loocke W, Gartlgruber M, et al. TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets. Nat Commun. 2018;9:4866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Xu Q, Chen J, Ni S, Tan C, Xu M, Dong L, et al. Pan-cancer transcriptome analysis reveals a gene expression signature for the identification of tumor tissue origin. Mod Pathol. 2016;29:546–56.

    Article  PubMed  CAS  Google Scholar 

  19. Chen H, Li C, Peng X, Zhou Z, Weinstein JN. Cancer Genome Atlas Research N, et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell. 2018;173:386–99 e312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Petell CJ, Alabdi L, He M, San Miguel P, Rose R, Gowher H. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res. 2016;44:7605–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell. 2010;6:479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiench M, John S, Baek S, Johnson TA, Sung MH, Escobar T, et al. DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 2011;30:3028–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470:279–83.

    Article  CAS  PubMed  Google Scholar 

  24. Benner C, Isoda T, Murre C. New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors. Proc Natl Acad Sci USA. 2015;112:12776–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bell RE, Golan T, Sheinboim D, Malcov H, Amar D, Salamon A, et al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 2016;26:601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song Y, van den Berg PR, Markoulaki S, Soldner F, Dall’Agnese A, Henninger JE, et al. Dynamic Enhancer DNA methylation as basis for transcriptional and cellular heterogeneity of ESCs. Mol Cell. 2019;75:905–20 e906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paralkar Vikram R, Taborda Cristian C, Huang P, Yao Y, Kossenkov Andrew V, Prasad R, et al. Unlinking an lncRNA from its associated cis element. Mol Cell. 2016;62:104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aguilo F, Li S, Balasubramaniyan N, Sancho A, Benko S, Zhang F, et al. Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α. Cell Rep. 2016;14:479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao Y, Wang L, Ren S, Wang L, Blackburn PR, McNulty MS, et al. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 2016;15:599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miao Y, Ajami NE, Huang T-S, Lin F-M, Lou C-H, Wang Y-T, et al. Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nat Commun. 2018;9:292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Xiong L, Wu F, Wu Q, Xu L, Cheung OK, Kang W, et al. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun. 2019;10:335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A, et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013;2:e00523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37:710–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsamardinos I, Borboudakis G. Permutation Testing Improves Bayesian Network Learning. In: Balcázar JL, Bonchi F, Gionis A, Sebag M (eds). Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg: Berlin, Heidelberg, 2010, pp 322–37. https://doi.org/10.1007/978-3-642-15939-8_21.

  35. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Suzuki T, Maeda S, Furuhata E, Shimizu Y, Nishimura H, Kishima M, et al. A screening system to identify transcription factors that induce binding site-directed DNA demethylation. Epigenetics Chromatin. 2017;10:60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Feldmann A, Ivanek R, Murr R, Gaidatzis D, Burger L, Schübeler D. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 2013;9:e1003994–e1003994.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xiong L, Wu F, Wu Q, Xu L, Cheung OK, Kang W, et al. Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun. 2019;10:335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem. Cells Cell. 2005;122:947–56.

    Article  CAS  PubMed  Google Scholar 

  41. Chung VY, Tan TZ, Ye J, Huang R-L, Lai H-C, Kappei D, et al. The role of GRHL2 and epigenetic remodeling in epithelial–mesenchymal plasticity in ovarian cancer cells. Commun Biol. 2019;2:272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Baek S-J, Kim M, Bae D-H, Kim J-H, Kim H-J, Han M-E, et al. Integrated epigenomic analyses of enhancer as well as promoter regions in gastric cancer. Oncotarget. 2016;7:25620–31.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B, et al. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci USA. 2012;109:7362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46:D380–d386.

    Article  CAS  PubMed  Google Scholar 

  45. Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh N, Adrian J, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020;583:699–710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sladky VC, Knapp K, Soratroi C, Heppke J, Eichin F, Rocamora-Reverte L, et al. E2F-family members engage the PIDDosome to limit hepatocyte ploidy in liver development and regeneration. Dev Cell. 2020;52:335–.e337.

    Article  CAS  PubMed  Google Scholar 

  47. Kent LN, Rakijas JB, Pandit SK, Westendorp B, Chen H-Z, Huntington JT, et al. E2f8 mediates tumor suppression in postnatal liver development. J Clin Investig. 2016;126:2955–69.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18:696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cotto KC, Wagner AH, Feng YY, Kiwala S, Coffman AC, Spies G, et al. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 2018;46:D1068–D1073.

    Article  CAS  PubMed  Google Scholar 

  50. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, et al. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;1:1–16.

    Google Scholar 

  51. Priness I, Maimon O, Ben-Gal I. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinform. 2007;8:111.

    Article  CAS  Google Scholar 

  52. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics. 2002;18:S231–S240.

    Article  PubMed  Google Scholar 

  53. Niculescu RS, Mitchell TM, Rao RB, Bennett KP, Parrado-Hernández E. Bayesian network learning with parameter constraints. J Mach Learn Res. 2006;7:1357–83.

    Google Scholar 

  54. Qian M, Zhang H, Kham SK, Liu S, Jiang C, Zhao X, et al. Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities of EP300 and CREBBP. Genome Res. 2017;27:185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, et al. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 2013;4:578–88.

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, et al. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 2015;75:3728–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tong Y, Sun J, Wong CF, Kang Q, Ru B, Wong CN, et al. MICMIC: identification of DNA methylation of distal regulatory regions with causal effects on tumorigenesis. Genome Biol. 2018;19:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Wagenmakers E-J, Farrell S. AIC model selection using Akaike weights. Psychonomic Bull Rev. 2004;11:192–6.

    Article  Google Scholar 

  59. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46:D794–D801.

    Article  CAS  PubMed  Google Scholar 

  60. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mei S, Meyer CA, Zheng R, Qin Q, Wu Q, Jiang P, et al. Cistrome cancer: a web resource for integrative gene regulation modeling in cancer. Cancer Res. 2017;77:e19–e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yao L, Shen H, Laird PW, Farnham PJ, Berman BP. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes. Genome Biol. 2015;16:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the TCGA, ENCODE, TANRIC, and GEO for providing data for this work.

Funding

This work was supported by the Natural Science Foundation of Heilongjiang Province, China [LH2020C05]; the National Natural Science Foundation of China [32170674 and 32070672].

Author information

Authors and Affiliations

Authors

Contributions

XP designed the study, performed analysis, wrote and revised the manuscript. XL constructed the webserver and revised the manuscript. HH helped with data collection. JS and ZX proofread the manuscript and linguistic touch-ups. HZ and SN share the senior authorship of this study. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shangwei Ning or Hui Zhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Li, X., Sun, J. et al. Enhancer methylation dynamics drive core transcriptional regulatory circuitry in pan-cancer. Oncogene 41, 3474–3484 (2022). https://doi.org/10.1038/s41388-022-02359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02359-x

This article is cited by

Search

Quick links