Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RIOK1 mediates p53 degradation and radioresistance in colorectal cancer through phosphorylation of G3BP2

Abstract

RIO Kinase 1 (RIOK1) is involved in various pathologies, including cancer. However, the role of RIOK1 in radioresistance of colorectal cancer (CRC) remains largely unknown. In this study, we reported that RIOK1 was overexpressed in rectal cancer tissue with weaker tumor regression after neoadjuvant chemoradiotherapy (neoCRT). Moreover, higher RIOK1 expression predicted a poor prognosis in patients with rectal cancer. Blockade of RIOK1 using Toyocamycin, a pharmacological inhibitor of RIOK1, or by knocking down its expression, decreased the resistance of CRC cells to radiotherapy in vitro and in vivo. A mechanistic study revealed that RIOK1 regulates radioresistance by suppressing the p53 signaling pathway. Furthermore, we found that RIOK1 and Ras-GAP SH3 domain binding protein 2 (G3BP2) interact with each other. RIOK1 phosphorylates G3BP2 at Thr226, which increases the activity of G3BP2. RIOK1-mediated phosphorylation of G3BP2 facilitated ubiquitination of p53 by murine double minute 2 protein (MDM2). Altogether, our study revealed the clinical significance of RIOK1 in CRC, and therapies targeting RIOK1 might alleviate the CRC tumor burden in patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High RIOK1 levels are associated with TRG and poor prognosis in LARC patients treated with neoCRT.
Fig. 2: Knockdown of RIOK1 inhibits resistance of CRC cells to radiotherapy in vivo and in vitro.
Fig. 3: RIOK1 regulates p53 protein stability in CRC cells.
Fig. 4: RIOK1 directly binds to G3BP2 in CRC cells.
Fig. 5: RIOK1-mediated phosphorylation at T226 is required for the function of G3BP2 in regulating p53 stability.
Fig. 6: RIOK1 promotes resistance of CRC cells to radiotherapy via G3BP2.
Fig. 7: Pharmacological inhibitor of RIOK1 promotes sensitivity of CRC cells to radiotherapy.

Similar content being viewed by others

Data availability

The RNA-seq datasets analyzed for this study are available in the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/sra/). BioProject accession number: PRJNA827462.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Gu X, Zheng R, Xia C, Zeng H, Zhang S, Zou X, et al. Interactions between life expectancy and the incidence and mortality rates of cancer in China: a population-based cluster analysis. Cancer Commun. 2018;38:44.

    Article  Google Scholar 

  3. Baker B, Salameh H, Al-Salman M, Daoud F. How does preoperative radiotherapy affect the rate of sphincter-sparing surgery in rectal cancer? Surg Oncol. 2012;21:e103–9.

    Article  PubMed  Google Scholar 

  4. Yang P, Yang Y, An W, Xu J, Zhang G, Jie J, et al. The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol. 2017;32:837–45.

    Article  CAS  PubMed  Google Scholar 

  5. Kim BM, Hong Y, Lee S, Liu P, Lim JH, Lee YH, et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int J Mol Sci. 2015;16:26880–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Connor MJ. Targeting the DNA damage response in cancer. Mol Cell. 2015;60:547–60.

    Article  PubMed  CAS  Google Scholar 

  7. Hu S, Cao B, Zhang M, Linghu E, Zhan Q, Brock MV, et al. Epigenetic silencing BCL6B induced colorectal cancer proliferation and metastasis by inhibiting P53 signaling. Am J Cancer Res. 2015;5:651–62.

    PubMed  PubMed Central  Google Scholar 

  8. Li J, Kurokawa M. Regulation of MDM2 stability after DNA damage. J Cell Physiol. 2015;230:2318–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinata N, Shirakawa T, Zhang Z, Matsumoto A, Fujisawa M, Okada H, et al. Radiation induces p53-dependent cell apoptosis in bladder cancer cells with wild-type- p53 but not in p53-mutated bladder cancer cells. Urol Res. 2003;31:387–96.

    Article  CAS  PubMed  Google Scholar 

  10. Kong X, Yu D, Wang Z, Li S. Relationship between p53 status and the bioeffect of ionizing radiation. Oncol Lett. 2021;22:661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun Y, Ding Y, Guo C, Liu C, Ma P, Ma S, et al. α-Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling. Oncogene. 2019;38:4856–74.

    Article  CAS  PubMed  Google Scholar 

  12. Hong HQ, Lu J, Fang XL, Zhang YH, Cai Y, Yuan J, et al. G3BP2 is involved in isoproterenol-induced cardiac hypertrophy through activating the NF-κB signaling pathway. Acta Pharm Sin. 2018;39:184–94.

    Article  CAS  Google Scholar 

  13. Prentzell MT, Rehbein U, Cadena Sandoval M, De Meulemeester AS, Baumeister R, Brohée L, et al. G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell. 2021;184:655–74 e627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim MM, Wiederschain D, Kennedy D, Hansen E, Yuan ZM. Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP). Oncogene. 2007;26:4209–15.

    Article  CAS  PubMed  Google Scholar 

  15. Tourrière H, Gallouzi IE, Chebli K, Capony JP, Mouaikel J, van der Geer P, et al. RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol. 2001;21:7747–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tsai WC, Reineke LC, Jain A, Jung SY, Lloyd RE. Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1. J Biol Chem. 2017;292:18886–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gal J, Chen J, Na DY, Tichacek L, Barnett KR, Zhu H. The acetylation of lysine-376 of G3BP1 regulates RNA binding and stress granule dynamics. Mol Cell Biol. 2019;39:e00052–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Angermayr M, Bandlow W. RIO1, an extraordinary novel protein kinase. FEBS Lett. 2002;524:31–6.

    Article  CAS  PubMed  Google Scholar 

  19. LaRonde-LeBlanc N, Wlodawer A. A family portrait of the RIO kinases. J Biol Chem. 2005;280:37297–300.

    Article  CAS  PubMed  Google Scholar 

  20. Angermayr M, Roidl A, Bandlow W. Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol Microbiol. 2002;44:309–24.

    Article  CAS  PubMed  Google Scholar 

  21. LaRonde-LeBlanc N, Wlodawer A. The RIO kinases: an atypical protein kinase family required for ribosome biogenesis and cell cycle progression. Biochim Biophys Acta. 2005;1754:14–24.

    Article  CAS  PubMed  Google Scholar 

  22. Line A, Slucka Z, Stengrevics A, Silina K, Li G, Rees RC. Characterisation of tumor-associated antigens in colon cancer. Cancer Immunol Immunother. 2002;51:574–82.

    Article  CAS  PubMed  Google Scholar 

  23. Weinberg F, Reischmann N, Fauth L, Taromi S, Mastroianni J, Köhler M, et al. The atypical kinase RIOK1 promotes tumor growth and invasive behavior. EBioMedicine. 2017;20:79–97.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1046–51.

    Article  CAS  PubMed  Google Scholar 

  25. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  26. Hong X, Huang H, Qiu X, Ding Z, Feng X, Zhu Y, et al. Targeting posttranslational modifications of RIOK1 inhibits the progression of colorectal and gastric cancers. eLife. 2018;7:e29511.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Read RD, Fenton TR, Gomez GG, Wykosky J, Vandenberg SR, Babic I, et al. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma. PLoS Genet. 2013;9:e1003253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singleton DC, Rouhi P, Zois CE, Haider S, Li JL, Kessler BM, et al. Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene. 2015;34:4713–22.

    Article  CAS  PubMed  Google Scholar 

  29. Huang Q, Lin Z, Wu P, Ni J, Shen Y. Phosphoproteomic analysis reveals Rio1-related protein phosphorylation changes in response to UV irradiation in Sulfolobus islandicus REY15A. Front Microbiol. 2020;11:586025.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Williams E, Lowe TM, Savas J, DiRuggiero J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles. 2007;11:19–29.

    Article  CAS  PubMed  Google Scholar 

  31. Huang Q, Mayaka JB, Zhong Q, Zhang C, Hou G, Ni J, et al. Phosphorylation of the archaeal Holliday junction resolvase Hjc inhibits its catalytic activity and facilitates DNA repair in Sulfolobus islandicus REY15A. Front Microbiol. 2019;10:1214.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.

    Article  CAS  PubMed  Google Scholar 

  33. Lu C, El-Deiry WS. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis. 2009;14:597–606.

    Article  CAS  PubMed  Google Scholar 

  34. Meek DW. Tumor suppression by p53: a role for the DNA damage response? Nat Rev Cancer. 2009;9:714–23.

    Article  CAS  PubMed  Google Scholar 

  35. Williams AB, Schumacher B. p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 2016;6:a026070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee JT, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 2010;17:86–92.

    Article  CAS  PubMed  Google Scholar 

  37. Wade M, Li YC, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie J, Li Y, Jiang K, Hu K, Zhang S, Dong X, et al. CDK16 phosphorylates and degrades p53 to promote radioresistance and predicts prognosis in lung cancer. Theranostics. 2018;8:650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137:609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guderian G, Peter C, Wiesner J, Sickmann A, Schulze-Osthoff K, Fischer U, et al. RioK1, a new interactor of protein arginine methyltransferase 5 (PRMT5), competes with pICln for binding and modulates PRMT5 complex composition and substrate specificity. J Biol Chem. 2011;286:1976–86.

    Article  CAS  PubMed  Google Scholar 

  41. Ferreira-Cerca S, Kiburu I, Thomson E, LaRonde N, Hurt E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 2014;42:8635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iacovella MG, Golfieri C, Massari LF, Busnelli S, Pagliuca C, Dal Maschio M, et al. Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation. Nat Commun. 2015;6:6643.

    Article  CAS  PubMed  Google Scholar 

  43. Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 2003;160:823–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (No. 2019M663289), Natural Science Foundation of Guangdong Province (Nos. 2019A1515110144 and 2021A1515111014) and National Natural Science Foundation of China (No. 81572725).

Author information

Authors and Affiliations

Authors

Contributions

ZH and JH designed the study. YC and SZ performed most of the experiments. KW and LY performed animal experiments and constructed the expression plasmids. QO and JQ collected biological samples, analyzed the data and made the figures. CZ and HD performed Mass Spectrometry Analysis. ZH and SZ participated in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenlin Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Approvals from the ethical committee of Sun Yat-sen University Cancer Center and prior patient’s consents were previously obtained for the use of these clinical specimens for research purpose. The animal experiments were conducted according to the Animal Study Guidelines of the Ethics Committee of Sun Yat-sen University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhou, S., Wan, K. et al. RIOK1 mediates p53 degradation and radioresistance in colorectal cancer through phosphorylation of G3BP2. Oncogene 41, 3433–3444 (2022). https://doi.org/10.1038/s41388-022-02352-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02352-4

This article is cited by

Search

Quick links