Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RUVBL1 promotes enzalutamide resistance of prostate tumors through the PLXNA1-CRAF-MAPK pathway

Abstract

Although enzalutamide improves the overall survival of patients with metastatic prostate cancers, enzalutamide resistance (ENZR) will be inevitably developed. Emerging evidence support that alternative oncogenic pathways may bypass the androgen receptor (AR) signaling to promote ENZR progression, however, the underpinning mechanisms remain poorly defined. Here, we report that the expression of RuvB like AAA ATPase 1 (RUVBL1) is upregulated in ENZR cells and xenograft models and prostate tumors in patients. Enzalutamide increases RUVBL1 accumulation in the cytoplasm, which in turn enhances the recruitment of CRAF proto-oncogene serine/threonine kinase protein to plexin A1 (PLXNA1) and the subsequent activation of the downstream MAPK pathway. Co-overexpression of RUVBL1 and PLXNA1 defines a subgroup of prostate cancer (PCa) patients with a poor prognosis. Furthermore, pharmacological inhibition of RUVBL1 by CB-6644 suppresses ENZR cell proliferation and xenograft growth and allows re-sensitization of ENZR cells and xenografts to enzalutamide, indicating that RUVBL1 may act to substitute the AR signaling to promote cancer cell survival and ENZR development. Together, these findings may lead to the identification of RUVBL1 as a potential therapeutic target for ENZR tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of RUVBL1 high expression in enzalutamide resistant CRPC.
Fig. 2: RUVBL1 promotes cell growth and xenograft progression.
Fig. 3: Enzalutamide can promote RUVBL1 cytoplasmic distribution.
Fig. 4: RUVBL1 activates MAPK signaling to promote the enzalutamide resistance.
Fig. 5: RUVBL1 activates MAPK pathway through the recruitment of PLXNA1 and CRAF.
Fig. 6: CB-6644 inhibits growth of enzalutamide resistant PCa in vitro and in vivo.

Similar content being viewed by others

References

  1. Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015;15:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science. 2009;324:787–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mostaghel EA, Zhang A, Hernandez S, Marck BT, Zhang X, Tamae D, et al. Contribution of adrenal glands to intratumor androgens and growth of castration-resistant prostate cancer. Clin Cancer Res. 2019;25:426–39.

    Article  CAS  PubMed  Google Scholar 

  5. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009;69:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. He Y, Wei T, Ye Z, Orme JJ, Lin D, Sheng H, et al. A noncanonical AR addiction drives enzalutamide resistance in prostate cancer. Nat Commun. 2021;12:1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arora VK, Schenkein E, Murali R, Subudhi SK, Wongvipat J, Balbas MD, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013;155:1309–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19:792–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mello T, Materozzi M, Zanieri F, Simeone I, Ceni E, Bereshchenko O, et al. Liver haploinsufficiency of RuvBL1 causes hepatic insulin resistance and enhances hepatocellular carcinoma progression. Int J Cancer. 2020;146:3410–22.

    Article  CAS  PubMed  Google Scholar 

  13. Fan W, Xie J, Xia J, Zhang Y, Yang M, Wang H, et al. RUVBL1-ITFG1 interaction is required for collective invasion in breast cancer. Biochim Biophys Acta Gen Subj. 2017;1861:1788–1800.

    Article  CAS  PubMed  Google Scholar 

  14. Yenerall P, Das AK, Wang S, Kollipara RK, Li LS, Villalobos P, et al. RUVBL1/RUVBL2 ATPase activity drives PAQosome maturation, DNA replication and radioresistance in lung cancer. Cell Chem Biol. 2020;27:105–21.

    Article  CAS  PubMed  Google Scholar 

  15. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell. 2008;132:945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huber O, Menard L, Haurie V, Nicou A, Taras D, Rosenbaum J. Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res. 2008;68:6873–6.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, et al. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of beta-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 2019;18:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Aramayo RJ, Willhoft O, Ayala R, Bythell-Douglas R, Wigley DB, Zhang X. Cryo-EM structures of the human INO80 chromatin-remodeling complex. Nat Struct Mol Biol. 2018;25:37–44.

    Article  CAS  PubMed  Google Scholar 

  19. Mao YQ, Houry WA. The role of pontin and reptin in cellular physiology and cancer etiology. Front Mol Biosci. 2017;4:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dauden MI, Lopez-Perrote A, Llorca O. RUVBL1-RUVBL2 AAA-ATPase: a versatile scaffold for multiple complexes and functions. Curr Opin Struct Biol. 2021;67:78–85.

    Article  CAS  PubMed  Google Scholar 

  21. Clarke TL, Sanchez-Bailon MP, Chiang K, Reynolds JJ, Herrero-Ruiz J, Bandeiras TM, et al. PRMT5-dependent methylation of the TIP60 coactivator RUVBL1 is a key regulator of homologous recombination. Mol Cell. 2017;65:900–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Runge JS, Raab JR, Magnuson T. Identification of two distinct classes of the human INO80 complex genome-wide. G3 (Bethesda). 2018;8:1095–102.

    Article  CAS  Google Scholar 

  23. Izumi N, Yamashita A, Hirano H, Ohno S. Heat shock protein 90 regulates phosphatidylinositol 3-kinase-related protein kinase family proteins together with the RUVBL1/2 and Tel2-containing co-factor complex. Cancer Sci. 2012;103:50–57.

    Article  CAS  PubMed  Google Scholar 

  24. Wood MA, McMahon SB, Cole MD. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell. 2000;5:321–30.

    Article  CAS  PubMed  Google Scholar 

  25. Bizarro J, Charron C, Boulon S, Westman B, Pradet-Balade B, Vandermoere F, et al. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. J Cell Biol. 2014;207:463–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lauscher JC, Loddenkemper C, Kosel L, Grone J, Buhr HJ, Huber O. Increased pontin expression in human colorectal cancer tissue. Hum Pathol. 2007;38:978–85.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Ren J, Yan L, Tang Y, Zhang W, Li D, et al. Cytoplasmic expression of pontin in renal cell carcinoma correlates with tumor invasion, metastasis and patients’ survival. PLoS One. 2015;10:e0118659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Guo H, Zhang XY, Peng J, Huang Y, Yang Y, Liu Y, et al. RUVBL1, a novel C-RAF-binding protein, activates the RAF/MEK/ERK pathway to promote lung cancer tumorigenesis. Biochem Biophys Res Commun. 2018;498:932–9.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan XS, Wang ZT, Hu YJ, Bao FC, Yuan P, Zhang C, et al. Downregulation of RUVBL1 inhibits proliferation of lung adenocarcinoma cells by G1/S phase cell cycle arrest via multiple mechanisms. Tumor Biol (Artic). 2016;37:16015–27.

    Article  CAS  Google Scholar 

  30. Taniuchi K, Furihata M, Iwasaki S, Tanaka K, Shimizu T, Saito M, et al. RUVBL1 directly binds actin filaments and induces formation of cell protrusions to promote pancreatic cancer cell invasion. Int J Oncol. 2014;44:1945–54.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L, et al. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther. 2013;12:2342–55.

    Article  CAS  PubMed  Google Scholar 

  32. Advani SJ, Camargo MF, Seguin L, Mielgo A, Anand S, Hicks AM, et al. Kinase-independent role for CRAF-driving tumour radioresistance via CHK2. Nat Commun. 2015;6:8154.

    Article  PubMed  Google Scholar 

  33. Assimon VA, Tang Y, Vargas JD, Lee GJ, Wu ZY, Lou K, et al. CB-6644 is a selective inhibitor of the RUVBL1/2 complex with anticancer activity. ACS Chem Biol. 2019;14:236–44.

    Article  CAS  PubMed  Google Scholar 

  34. Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, et al. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res. 2019;79:2580–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verras M, Lee J, Xue H, Li TH, Wang Y, Sun Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res. 2007;67:967–75.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang A, Zhao JC, Kim J, Fong KW, Yang YA, Chakravarti D, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 2015;13:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao JC, Yu J, Runkle C, Wu L, Hu M, Wu D, et al. Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res. 2012;22:322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tellman TV, Cruz LA, Grindel BJ, Farach-Carson MC. Cleavage of the perlecan-semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) complex by matrix metalloproteinase 7/matrilysin triggers prostate cancer cell dyscohesion and migration. Int J Mol Sci. 2021;22:3218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ren S, Wei GH, Liu D, Wang L, Hou Y, Zhu S, et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol. 2018;73:322–39.

    Article  CAS  PubMed  Google Scholar 

  40. Gao L, Zhang W, Zhang J, Liu J, Sun F, Liu H, et al. KIF15-mediated stabilization of AR and AR-V7 contributes to enzalutamide resistance in prostate cancer. Cancer Res. 2021;81:1026–39.

    Article  CAS  PubMed  Google Scholar 

  41. Qi M, Jiao M, Li X, Hu J, Wang L, Zou Y, et al. CUL4B promotes gastric cancer invasion and metastasis-involvement of upregulation of HER2. Oncogene. 2018;37:1075–85.

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Zhang J, Yang X, Chang YW, Qi M, Zhou Z, et al. SOX4 is associated with poor prognosis in prostate cancer and promotes epithelial-mesenchymal transition in vitro. Prostate Cancer Prostatic Dis. 2013;16:301–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hu J, Sun F, Chen W, Zhang J, Zhang T, Qi M, et al. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1. J Exp Clin Cancer Res. 2019;38:227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, et al. PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res. 2017;77:5755–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Joint Research Fund of Natural Science, Shandong Province (ZR2019LZL014), National Natural Science Foundation of China (Grant No. 81972416, 82172818), Major Science and Technology Innovation Project of Shandong Province (2018CXGC1210), the National Key Research and Development Program of China (2018YFC0114703), and The Fundamental Research Funds of Shandong University (2018JC016).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: FS, XD, and BH. Data acquisition: FS, XW, TF, LG, WZ, XW, ZY, BD, and XW. Analysis and interpretation of the data: FS, XW, JL, WJ, Hl, KL, YS. Paper preparation: FS, BH, and XD. Critical review: BH, FS, XW, and XD.

Corresponding authors

Correspondence to Xuesen Dong or Bo Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Wang, X., Hu, J. et al. RUVBL1 promotes enzalutamide resistance of prostate tumors through the PLXNA1-CRAF-MAPK pathway. Oncogene 41, 3239–3250 (2022). https://doi.org/10.1038/s41388-022-02332-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02332-8

This article is cited by

Search

Quick links