Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hesperadin suppresses pancreatic cancer through ATF4/GADD45A axis at nanomolar concentrations

Abstract

Pancreatic cancer (PC) is a fatal disease with poor survival and limited therapeutic strategies. In this study, we identified Hesperadin as a potent anti-cancer compound against PC, from a high-throughput screening of a commercial chemical library associated with cell death. Hesperadin induced potent growth inhibition in PC cell lines and patient-derived tumor organoids in a dose- and time-dependent manner, with IC50 values in the nanomolar range. Cellular studies showed that Hesperadin caused mitochondria damage in PC cells, resulting in reactive oxygen species production, ER stress and apoptotic cell death. Transcriptomic analysis using RNA-sequencing data identified GADD45A as a potential target of Hesperadin. Mechanistic studies showed that Hesperadin could increase GADD45A expression in PC cells via ATF4, leading to apoptosis. Moreover, immunohistochemical staining of 92 PC patient samples demonstrated the correlation between ATF4 and GADD45A expression. PC xenograft studies demonstrated that Hesperadin could effectively inhibit the growth of PC cells in vivo. Together, these findings suggest that Hesperadin is a novel drug candidate for PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of Hesperadin as a novel anti-cancer agent against PC.
Fig. 2: Hesperadin induces mitochondrial dysfunction and ROS accumulation.
Fig. 3: Hesperadin leads to cell death via ER stress.
Fig. 4: ROS are critical in ER stress-induced cell death.
Fig. 5: Hesperadin leads to PC cells death via ATF4/GADD45A axis.
Fig. 6: Hesperadin inhibits the proliferation of PC organoids.
Fig. 7: Hesperadin inhibits xenograft tumor growth in vivo.
Fig. 8: Schematic of the anti-tumor effects of Hesperadin in PC cells.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Moore A, Donahue T. Pancreatic cancer. JAMA. 2019;322:1426.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang ZQ, Zhang F, Deng T, Zhang L, Feng F, Wang FH, et al. The efficacy and safety of modified FOLFIRINOX as first-line chemotherapy for Chinese patients with metastatic pancreatic cancer. Cancer Commun. 2019;39:26.

    Article  Google Scholar 

  4. Garrido-Laguna I, Hidalgo M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 2015;12:319–34.

    Article  CAS  PubMed  Google Scholar 

  5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  6. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Prim. 2016;2:16022.

    Article  PubMed  Google Scholar 

  7. Du J, Wang X, Li Y, Ren X, Zhou Y, Hu W, et al. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis. 2021;12:705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li X, Ma T, Zhang Q, Chen YG, Guo CX, Shen YN, et al. Modified-FOLFIRINOX in metastatic pancreatic cancer: a prospective study in Chinese population. Cancer Lett. 2017;406:22–6.

    Article  CAS  PubMed  Google Scholar 

  9. Zong WX, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiu HY, Tay EXY, Ong DST, Taneja R. Mitochondrial dysfunction at the center of cancer therapy. Antioxid Redox Signal. 2020;32:309–30.

    Article  CAS  PubMed  Google Scholar 

  11. Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, et al. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion. 2007;7:106–18.

    Article  CAS  PubMed  Google Scholar 

  12. Chuang KC, Chang CR, Chang SH, Huang SW, Chuang SM, Li ZY, et al. Imiquimod-induced ROS production disrupts the balance of mitochondrial dynamics and increases mitophagy in skin cancer cells. J Dermatol Sci. 2020;98:152–62.

    Article  CAS  PubMed  Google Scholar 

  13. Rodic S, Vincent MD. Reactive oxygen species (ROS) are a key determinant of cancer’s metabolic phenotype. Int J Cancer. 2018;142:440–8.

    Article  CAS  PubMed  Google Scholar 

  14. Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30:440–51.

    Article  CAS  PubMed  Google Scholar 

  15. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Disco. 2013;12:931–47.

    Article  CAS  Google Scholar 

  16. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

    Article  CAS  PubMed  Google Scholar 

  17. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. 2017;168:692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 2013;332:249–64.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36:1302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin Y, Jiang M, Chen W, Zhao T, Wei Y. Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother. 2019;118:109249.

    Article  CAS  PubMed  Google Scholar 

  21. Liu S, Xin D, Wang L, Zhang T, Bai X, Li T, et al. Therapeutic effects of L-Cysteine in newborn mice subjected to hypoxia-ischemia brain injury via the CBS/H2S system: role of oxidative stress and endoplasmic reticulum stress. Redox Biol. 2017;13:528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Liang M, Jiang J, He R, Wang M, Guo X, et al. Combined inhibition of autophagy and Nrf2 signaling augments bortezomib-induced apoptosis by increasing ROS production and ER stress in pancreatic cancer cells. Int J Biol Sci. 2018;14:1291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng X, Feng H, Wu H, Jin Z, Shen X, Kuang J, et al. Targeting autophagy enhances apatinib-induced apoptosis via endoplasmic reticulum stress for human colorectal cancer. Cancer Lett. 2018;431:105–14.

    Article  CAS  PubMed  Google Scholar 

  24. Nano M, Gemble S, Simon A, Pennetier C, Fraisier V, Marthiens V, et al. Cell-cycle asynchrony generates DNA damage at mitotic entry in polyploid cells. Curr Biol. 2019;29:3937–45.e3937.

    Article  CAS  PubMed  Google Scholar 

  25. Tempero MA. NCCN guidelines updates: pancreatic cancer. J Natl Compr Canc Netw. 2019;17:603–5.

    CAS  PubMed  Google Scholar 

  26. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalf W, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol. 2018;15:333–48.

    Article  PubMed  Google Scholar 

  27. Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R, et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol. 2003;161:281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong W, Matheson CJ, Xu M, Backos DS, Mills TS, Salian-Mehta S, et al. Structure-based screen identification of a mammalian Ste20-like Kinase 4 (MST4) inhibitor with therapeutic potential for pituitary tumors. Mol Cancer Ther. 2016;15:412–20.

    Article  CAS  PubMed  Google Scholar 

  29. Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: finding novel mechanisms to fight tumours. EBioMedicine. 2020;59:102943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9:753.

    Article  CAS  Google Scholar 

  31. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64.

    Article  CAS  PubMed  Google Scholar 

  32. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, et al. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020;52:192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Disco. 2009;8:579–91.

    Article  CAS  Google Scholar 

  34. Westrate LM, Lee JE, Prinz WA, Voeltz GK. Form follows function: the importance of endoplasmic reticulum shape. Annu Rev Biochem. 2015;84:791–811.

    Article  CAS  PubMed  Google Scholar 

  35. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012;19:1880–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, et al. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol. 2019;21:101061.

    Article  CAS  PubMed  Google Scholar 

  37. Yang L, Zhou X, Sun J, Lei Q, Wang Q, Pan D, et al. Reactive oxygen species mediate anlotinib-induced apoptosis via activation of endoplasmic reticulum stress in pancreatic cancer. Cell Death Dis. 2020;11:766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen W, Zou P, Zhao Z, Chen X, Fan X, Vinothkumar R, et al. Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer. Redox Biol. 2016;10:78–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu C, Zhang A. ROS-mediated PERK-eIF2α-ATF4 pathway plays an important role in arsenite-induced L-02 cells apoptosis via regulating CHOP-DR5 signaling. Environ Toxicol. 2020;35:1100–13.

    Article  CAS  PubMed  Google Scholar 

  40. Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YT, et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature. 2020;579:427–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Silva JM, Wong A, Carelli V, Cortopassi GA. Inhibition of mitochondrial function induces an integrated stress response in oligodendroglia. Neurobiol Dis. 2009;34:357–65.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki K, Uchiumi T, Toshima T, Yagi M, Do Y, Hirai H, et al. Mitochondrial translation inhibition triggers ATF4 activation, leading to integrated stress response but not to mitochondrial unfolded protein response. Biosci Rep. 2020;40:11.

    Article  Google Scholar 

  43. Hu Y, Jin R, Gao M, Xu H, Zou S, Li X, et al. Transcriptional repression of IKKbeta by p53 in arsenite-induced GADD45alpha accumulation and apoptosis. Oncogene. 2019;38:731–46.

    Article  CAS  PubMed  Google Scholar 

  44. Su MQ, Zhou YR, Rao X, Yang H, Zhuang XH, Ke XJ, et al. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int J Oncol. 2018;53:750–60.

    CAS  PubMed  Google Scholar 

  45. Li W, Liu J, Fu W, Zheng X, Ren L, Liu S, et al. 3-O-acetyl-11-keto-beta-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. J Exp Clin Cancer Res. 2018;37:132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou S, Zhang S, Wang L, Huang S, Yuan Y, Yang J, et al. BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis. 2020;9:93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81802396 and 82072652), Natural Science Foundation of Jiangsu Province (SBK2019022491 and BK20180117), General Project of Nanjing Medical Science and Technology Development Project (YKK17077), Nanjing Science and Technology Development Plan Project (201715023), Nanjing Medical Science and Technology Development Key Project (ZKX18022), and Nanjing Science and technology project (201911038).

Author information

Authors and Affiliations

Authors

Contributions

SZ, YL and XPZ conceived and designed the study. YXZ, JZW and YF performed the experiments and interpreted the data. RRY analyzed the sequencing results. HCS, QSZ and HW assisted in animal experiments. SQZ, KW and JZ assisted in collecting tissue samples. SSS and GFX assisted in analyzing data. LW and CY revised the manuscript.

Corresponding authors

Correspondence to Xiaoping Zou, Ying Lv or Shu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, J., Fu, Y. et al. Hesperadin suppresses pancreatic cancer through ATF4/GADD45A axis at nanomolar concentrations. Oncogene 41, 3394–3408 (2022). https://doi.org/10.1038/s41388-022-02328-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02328-4

This article is cited by

Search

Quick links