Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MUC1 triggers lineage plasticity of Her2 positive mammary tumors

Abstract

Aberrant overexpression of mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) are often observed in breast cancer. However, the role of concomitant MUC1/HER2 in the development of breast cancer has not been fully illustrated. Following analysis of public microarray datasets that revealed a correlation between double MUC1 and HER2 positivity and a worse clinical outcome, we generated a mouse model overexpressing both Her2 and MUC1 cytoplasmic domain (MUC1-CD) to investigate their interaction in mammary carcinogenesis. Coexpression of Her2 and MUC1-CD conferred a growth advantage and promoted the development of spontaneous mammary tumors. Genomic analysis revealed that enforced expression of MUC1-CD and Her2 induces mammary tumor lineage plasticity, which is supported by gene reprogramming and mammary stem cell enrichment. Through gain- and loss-of-function strategies, we show that coexpression of Her2 and MUC1-CD is associated with downregulation of tricarboxylic acid (TCA) cycle genes in tumors. Importantly, the reduction in TCA cycle genes induced by MUC1-CD was found to be significantly connected to poor prognosis in HER2+ breast cancer patients. In addition, MUC1 augments the Her2 signaling pathway by inducing Her2/Egfr dimerization. These findings collectively demonstrate the vital role of MUC1-CD/Her2 collaboration in shaping the mammary tumor landscape and highlight the prognostic and therapeutic implications of MUC1 in patients with HER2+ breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patients co-overexpressing MUC1 and HER2 display a worse clinical outcome.
Fig. 2: MUC1-CD and Her2 accelerate mammary tumorigenesis and cause lineage plasticity in a transgenic mouse model.
Fig. 3: MUC1-CD triggers metabolic gene reprogramming.
Fig. 4: Depletion of MUC1 rescues TCA gene expression and reverses breast carcinogenesis.
Fig. 5: Deficiency of TCA genes is correlated with short survival time in HER2+ breast cancer patients.
Fig. 6: Efnb1 expression is regulated by MUC1.
Fig. 7: MUC1-CD actives the Her2 signaling pathway by prompting dimerization of EGFR and Her2.
Fig. 8: Schematic overview of the work model.

Similar content being viewed by others

Data availability

The microarray data were deposited in the Gene Expression Omnibus with the accession code GSE198239. All other data generated and backing the results and conclusions of this study are available from the corresponding author on reasonable request.

Code availability

The code used will be made available upon request.

References

  1. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat Rev Clin Oncol. 2011;9:16–32.

    Article  PubMed  CAS  Google Scholar 

  2. Moasser MM. The oncogene HER2: Its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26:6469–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. Jama J Am Med Assoc. 2006;295:2492–502.

    Article  CAS  Google Scholar 

  4. Arkhipov A, Shan Y, Kim ET, Dror RO, Shaw DE. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. eLife. 2013;2:e00708.

    Article  PubMed  PubMed Central  Google Scholar 

  5. D’Amato V, Raimondo L, Formisano L, Giuliano M, De Placido S, Rosa R, et al. Mechanisms of lapatinib resistance in HER2-driven breast cancer. Cancer Treat Rev. 2015;41:877–83.

    Article  PubMed  CAS  Google Scholar 

  6. Khodarev NN, Pitroda SP, Beckett MA, MacDermed DM, Huang L, Kufe DW, et al. MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Res. 2009;69:2833–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990;265:15286–93.

    Article  CAS  PubMed  Google Scholar 

  8. Nath S, Mukherjee P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20:332–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kufe DW. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 2020;41:1173–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–81.

    Article  CAS  PubMed  Google Scholar 

  11. Schroeder JA, Thompson MC, Gardner MM, Gendler SJ. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001;276:13057–64.

    Article  CAS  PubMed  Google Scholar 

  12. Schroeder JA, Masri AA, Adriance MC, Tessier JC, Kotlarczyk KL, Thompson MC, et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene. 2004;23:5739–47.

    Article  CAS  PubMed  Google Scholar 

  13. Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D. MUC1 oncoprotein blocks glycogen synthase kinase 3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Res. 2005;65:10413–22.

    Article  CAS  PubMed  Google Scholar 

  14. Raina D, Uchida Y, Kharbanda A, Rajabi H, Panchamoorthy G, Jin C, et al. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 2014;33:3422–31.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Yi H, Yao Y, Liao X, Xie Y, Yang J, et al. The cytoplasmic domain of MUC1 induces hyperplasia in the mammary gland and correlates with nuclear accumulation of β-catenin. PLoS One. 2011;6:e19102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Pang Z, Dong X, Liao X, Deng H, Liao C, et al. MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget. 2018;9:3446–58.

    Article  PubMed  Google Scholar 

  17. Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C, Sakr RA, et al. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet. 2015;47:1212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lacunza E, Baudis M, Colussi AG, Segal-Eiras A, Croce MV, Abba MC. MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells. Cancer Genet Cytogenet. 2010;201:102–10.

  19. Nassar A, Khoor A, Radhakrishnan R, Radhakrishnan A, Cohen C. Correlation of HER2 overexpression with gene amplification and its relation to chromosome 17 aneuploidy: A 5-year experience with invasive ductal and lobular carcinomas. Int J Clin Exp Pathol. 2014;7:6254–61.

  20. Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sánchez V, et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci USA. 2013;110:14372–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang D, Hu X, Liu C, Jia Y, Bai Y, Cai C, et al. Protein C receptor is a therapeutic stem cell target in a distinct group of breast cancers. Cell Res. 2019;29:832–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou Z, Ibekwe E, Chornenkyy Y. Metabolic alterations in cancer cells and the emerging role of oncometabolites as drivers of neoplastic change. Antioxidants. 2018;7:16.

    Article  PubMed Central  CAS  Google Scholar 

  23. Raimundo N, Baysal BE, Shadel GS. Revisiting the TCA cycle: Signaling to tumor formation. Trends Mol Med. 2011;17:641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo J, Zhang R, Yang Z, Duan Z, Yin D, Zhou Y. Biological roles and therapeutic applications of IDH2 mutations in human cancer. Front Oncol. 2021;11:644857.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu B, Qiu J, Zhao TV, Wang Y, Maeda T, Goronzy IN, et al. Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T cells. Cell Metab. 2020;32:967.e5

  26. Vermeer PD, Colbert PL, Wieking BG, Vermeer DW, Lee JH. Targeting ERBB receptors shifts their partners and triggers persistent ERK signaling through a novel ERBB/EFNB1 complex. Cancer Res. 2013;73:5787–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Visvader JE, Stingl J. Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev. 2014;28:1143–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meier-Abt F, Bentires-Alj M. How pregnancy at early age protects against breast cancer. Trends Mol Med. 2014;20:143–53.

    Article  PubMed  Google Scholar 

  29. Alam M, Rajabi H, Ahmad R, Jin C, Kufe D. Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget. 2014;5:2622–34.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chung SS, Giehl N, Wu Y, Vadgama JV. STAT3 activation in HER2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits. Int J Oncol. 2014;44:403–11.

    Article  CAS  PubMed  Google Scholar 

  31. Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long M, et al. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun. 2020;11:338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rajabi H, Hiraki M, Kufe D. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells. Oncogene. 2018;37:2079–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10:165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho HJ, Hwang YS, Yoon J, Lee M, Lee HG, Daar IO. EphrinB1 promotes cancer cell migration and invasion through the interaction with RhoGDI1. Oncogene. 2017;37:861–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sawai Y, Tamura S, Fukui K, Ito N, Imanaka K, Saeki A, et al. Expression of ephrin-B1 in hepatocellular carcinoma: possible involvement in neovascularization. J Hepatol. 2003;39:991–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev. Cell. 2001;1:467–75.

    Article  CAS  PubMed  Google Scholar 

  37. Hynes NE, Watson CJ. Mammary gland growth factors: Roles in normal development and in cancer. Cold Spring Harb Perspect Biol. 2010;2:a003186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Schneider MR, Yarden Y. The EGFR-HER2 module: A stem cell approach to understanding a prime target and driver of solid tumors. Oncogene. 2016;35:2949–60.

    Article  CAS  PubMed  Google Scholar 

  39. Barberán S, Cebrià F. The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol. 2018;87:45–57.

    Article  PubMed  CAS  Google Scholar 

  40. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481:385–8.

    Article  CAS  Google Scholar 

  41. Gimm O, Armanios M, Dziema H, Neumann HP, Eng C. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res. 2000;60:6822–5.

    CAS  PubMed  Google Scholar 

  42. Marquez J, Flores J, Kim AH, Nyamaa B, Nguyen ATT, Park N, et al. Rescue of TCA cycle dysfunction for cancer therapy. J Clin Med. 2019;8:2161.

    Article  CAS  PubMed Central  Google Scholar 

  43. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    Article  CAS  PubMed  Google Scholar 

  44. Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT. Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol. 2008;28:718–31.

    Article  CAS  PubMed  Google Scholar 

  45. Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson AG, Johnson AR, et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell. 2017;31:181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka H, Sasayama T, Tanaka K, Nakamizo S, Nishihara M, Mizukawa K, et al. MicroRNA-183 upregulates HIF-1α by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol. 2013;111:273–83.

    Article  CAS  PubMed  Google Scholar 

  47. García-Heredia JM, Carnero A. Role of mitochondria in cancer stem cell resistance. Cells. 2020;9:1693.

    Article  PubMed Central  CAS  Google Scholar 

  48. El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1539–55.

    Article  CAS  PubMed  Google Scholar 

  49. Weerts MJA, Sieuwerts AM, Smid M, Look MP, Foekens JA, Sleijfer S, et al. Mitochondrial DNA content in breast cancer: Impact on in vitro and in vivo phenotype and patient prognosis. Oncotarget. 2016;7:29166–76.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mehla K, Singh PK. MUC1: A novel metabolic master regulator. Biochim Biophys Acta Rev Cancer. 2014;1845:126–35.

    Article  CAS  Google Scholar 

  51. Rajabi H, Hiraki M, Kufe D. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells. Oncogene. 2018;37:2079–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. BuKai C, Jie Y, WenYing M, JiJing S, Wei J, XiaoDong L, et al. Establishment of Muc1 gene knockout mouse model. Sci Sin Vitae. 2014;44:143–50.

    Article  Google Scholar 

  53. Johnson S, Chen H, Lo PK. Isolation of cancer epithelial cells from mouse mammary tumors. Bio Protoc. 2013;3:e326.

    PubMed  Google Scholar 

  54. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharm Pharmacother. 2013;4:303–6.

    Article  Google Scholar 

  55. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Harrell JC, Prat A, Parker JS, Fan C, He X, Carey L, et al. Genomic analysis identifies unique signatures predictive of brain, lung, and liver relapse. Breast Cancer Res Treat. 2012;132:523–35.

    Article  CAS  PubMed  Google Scholar 

  57. Andersen PK, Gill RD. Cox’s regression model for counting processes: A large sample study. Ann Stat. 1982;10:1100–20.

    Article  Google Scholar 

  58. Győrffy B. Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J. 2021;19:4101–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Package ‘corrplot’. Statistician. 2017;56:316–24.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 81874197 and 82073111), Science and Technology Commission of Shanghai Municipality (grant number 21S11901600) to Huang L. The authors appreciate Dr. Shuhai Lin for constructive suggestions.

Author information

Authors and Affiliations

Authors

Contributions

LH designed research; JC and GC contributed constructive suggestions; ZP, HD, CW, and XL performed research; ZP, XD, and CL contributed tumor tissues sequencing analysis and database analysis; HY provided patients tumor tissue samples; ZP, YL, and LH wrote the paper.

Corresponding authors

Correspondence to Haiying Yi or Lei Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Z., Dong, X., Deng, H. et al. MUC1 triggers lineage plasticity of Her2 positive mammary tumors. Oncogene 41, 3064–3078 (2022). https://doi.org/10.1038/s41388-022-02320-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02320-y

This article is cited by

Search

Quick links