Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRL2KLHDC3 mediates p14ARF N-terminal ubiquitylation degradation to promote non-small cell lung carcinoma progression

Abstract

Kelch superfamily involves a variety of proteins containing multiple kelch motif and is well characterized as substrate adaptors for CUL3 E3 ligases, which play critical roles in carcinogenesis. However, the role of kelch proteins in lung cancer remains largely unknown. In this study, the non-small cell lung cancer (NSCLC) patients with higher expression of a kelch protein, kelch domain containing 3 (KLHDC3), showed worse overall survival. KLHDC3 deficiency affected NSCLC cell lines proliferation in vitro and in vivo. Further study indicated that KLHDC3 mediated CUL2 E3 ligase and tumor suppressor p14ARF interaction, facilitating the N-terminal ubiquitylation and subsequent degradation of p14ARF. Interestingly, Gefitinib-resistant NSCLC cell lines displayed higher KLHDC3 protein levels. Gefitinib and Osimertinib medications were capable of upregulating KLHDC3 expression to promote p14ARF degradation in the NSCLC cell lines. KLHDC3 shortage significantly increased the sensitivity of lung cancer cells to epidermal growth factor receptor (EGFR)-targeted drugs, providing an alternative explanation for the development of Gefitinib and Osimertinib resistance in NSCLC therapy. Our works suggest that CRL2KLHDC3 could be a valuable target to regulate the abundance of p14ARF and postpone the occurrence of EGFR-targeted drugs resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KLHDC3 is highly expressed in NSCLC.
Fig. 2: Elevated KLHDC3 expression correlates with poor prognosis in NSCLC patients.
Fig. 3: KLHDC3 is required for NSCLC tumorigenesis.
Fig. 4: KLHDC3 mediates CUL2-p14ARF interaction.
Fig. 5: CUL2-KLHDC3 accelerates p14ARF degradation.
Fig. 6: KLHDC3 is a novel CUL2 E3 ubiquitin ligase adaptor of p14ARF.
Fig. 7: Gefitinib and Osimertinib upregulate KLHDC3 expression in NSCLC.

Similar content being viewed by others

References

  1. Khazaei Z, Sohrabivafa M, Momenabadi V, Moayed L, Goodarzi E. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide prostate cancers and their relationship with the human development index. Adv Hum Biol. 2019;9:245–50.

    Article  Google Scholar 

  2. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, et al. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:504–35.

    Article  Google Scholar 

  3. Zhong WZ, Wu YL, Chen KN, Chen C, Gu CD, Wang Q, et al. CTONG 1103: Erlotinib versus gemcitabine plus cisplatin as neo-adjuvant treatment for stage IIIA-N2 EGFR-mutation non- small cell lung cancer (EMERGING): a randomised study. Ann Oncol. 2018;29:738–738.

    Article  Google Scholar 

  4. Juan O, Popat S. Treatment choice in epidermal growth factor receptor mutation-positive non-small cell lung carcinoma: latest evidence and clinical implications. Therapeutic Adv Med Oncol. 2017;9:201–16.

    Article  CAS  Google Scholar 

  5. Schwaederle M, Lazar V, Validire P, Hansson J, Lacroix L, Soria J-C, et al. VEGF-A expression correlates with TP53 mutations in non-small cell lung cancer: implications for antiangiogenesis therapy. Cancer Res. 2015;75:1187–90.

    Article  CAS  PubMed  Google Scholar 

  6. Recondo G, Facchinetti F, Olaussen KA, Besse B, Friboulet L. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nature Reviews. Clin Oncol. 2018;15:694–708.

    CAS  Google Scholar 

  7. Cross DAE, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500.

    Article  CAS  PubMed  Google Scholar 

  9. Xue F, Cooley L. kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell. 1993;72:681–93.

    Article  CAS  PubMed  Google Scholar 

  10. Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol. 2000;10:17–24.

    Article  CAS  PubMed  Google Scholar 

  11. Dhanoa BS, Cogliati T, Satish AG, Bruford EA, Friedman JS. Update on the Kelch-like (KLHL) gene family. Human Genomics. 2013;7:13.

  12. Stogios PJ, Prive GG. The BACK domain in BTB-kelch proteins. Trends Biochem. Sci. 2004;29:634–7.

    Article  CAS  PubMed  Google Scholar 

  13. Nacak TG, Alajati A, Leptien K, Fulda C, Weber H, Miki T, et al. The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circulation Res. 2007;100:1155–63.

    Article  CAS  PubMed  Google Scholar 

  14. Yu W, Li Y, Zhou X, Deng Y, Wang Z, Yuan W, et al. A novel human BTB-kelch protein KLHL31, strongly expressed in muscle and heart, inhibits transcriptional activities of TRE and SRE. Mol Cell. 2008;26:443–53.

    CAS  Google Scholar 

  15. Strutt H, Searle E, Thomas-MacArthur V, Brookfield R, Strutt D. A Cul-3-BTB ubiquitylation pathway regulates junctional levels and asymmetry of core planar polarity proteins. Development. 2013;140:1693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shibata S, Zhang J, Puthumana J, Stone KL, Lifton RP. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA. 2013;110:7838–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of Cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 2010;143:951–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell. 2006;21:689–700.

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Yu S, Zhang C, Kong, NT A-. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic Biol Med. 2015;88:337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Ou Y, Yang Y, Li W, Xu Y, Xie Y, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature. 2018;557:585-+.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Therapeutics. 2010;9:336–46.

    Article  CAS  Google Scholar 

  22. Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M, et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature. 2003;425:316–21.

    Article  CAS  PubMed  Google Scholar 

  23. Ito N, Phillips SEV, Yadav KDS, Knowles PF. Crystal structure of a free radical enzyme, galactose oxidase. J Mol Biol. 1994;238:794–814.

    Article  CAS  PubMed  Google Scholar 

  24. Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, et al. Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to elongin BC-based ubiquitin ligases. J Biol Chem. 2008;283:8005–13.

    Article  CAS  PubMed  Google Scholar 

  25. Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ. N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev. 2004;18:1862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 2003;115:71–82.

    Article  CAS  PubMed  Google Scholar 

  27. Breitschopf K, Bengal E, Ziv T, Admon A, Ciechanover A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 1998;17:5964–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reinstein E, Scheffner M, Oren M, Ciechanover A, Schwartz A. Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene. 2000;19:5944–50.

    Article  CAS  PubMed  Google Scholar 

  29. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl J Med. 2009;361:958–U938.

    Article  CAS  PubMed  Google Scholar 

  30. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003;290(16):2149–58.

    Article  CAS  PubMed  Google Scholar 

  31. Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ. Tumor spectrum in ARF-deficient mice. Cancer Res. 1999;59:2217–22.

    CAS  PubMed  Google Scholar 

  32. Ozenne P, Eymin B, Brambilla E, Gazzeri S. The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer. 2010;127:2239–47.

    Article  CAS  PubMed  Google Scholar 

  33. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nat (Lond). 1997;387:296–9.

    Article  CAS  Google Scholar 

  34. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D. Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol. 1999;1:20–26.

    Article  CAS  PubMed  Google Scholar 

  35. Chen D, Shan J, Zhu W-G, Qin J, Gu W. Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature. 2010;464:624–U193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ko A, Shin J-Y, Seo J, Lee K-D, Lee E-W, Lee M-S, et al. Acceleration of gastric tumorigenesis through MKRN1-mediated posttranslational regulation of p14ARF. Jnci-J Natl Cancer Inst. 2012;104:1660–72.

    Article  CAS  Google Scholar 

  37. Wang X, Zha M, Zhao X, Jiang P, Du W, Tam AYH, et al. Siva1 inhibits p53 function by acting as an ARF E3 ubiquitin ligase. Nat. Commun. 2013;4:1551.

  38. Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci. 2017;42:873–86.

    Article  CAS  PubMed  Google Scholar 

  39. Petroski MD, Deshaies RJ. Function and regulation of Cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005;6:9–20.

    Article  CAS  PubMed  Google Scholar 

  40. Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev. 2017;36:683–702.

    Article  CAS  PubMed  Google Scholar 

  41. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10:760–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFR(T790M) mutation. Cancer Discov. 2012;2:922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maione P, Sacco PC, Sgambato A, Casaluce F, Rossi A, Gridelli C. Overcoming resistance to targeted therapies in NSCLC: current approaches and clinical application. Therapeutic Adv Med Oncol. 2015;7:263–73.

    Article  Google Scholar 

  44. Olszewski U, Poulsen TT, Ulsperger E, Poulsen HS, Geissler K, Hamilton G. In vitro cytotoxicity of combinations of dichloroacetate with anticancer platinum compounds. Clin Pharmacol: Adv Appl. 2010;2:177–83.

    CAS  Google Scholar 

  45. Garon EB, Christofk HR, Hosmer W, Britten CD, Bahng A, Crabtree MJ, et al. Dichloroacetate should be considered with platinum-based chemotherapy in hypoxic tumors rather than as a single agent in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2014;140:443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohinata Y, Sutou S, Mitsui Y. A novel testis-specific RAG2-like protein, Peas: its expression in pachytene spermatocyte cytoplasm and meiotic chromatin. FEBS Lett. 2003;537:1–5.

    Article  CAS  PubMed  Google Scholar 

  47. Senga SS, Grose RP. Hallmarks of cancer-the new testament. Open Biol. 2021;11:200358.

  48. Yan S, He F, Gao B, Wu H, Li M, Huang L, et al. Increased APOBEC3B predicts worse outcomes in lung cancer: a comprehensive retrospective study. J Cancer. 2016;7:618–25.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Luo Y, Liu Y, Wu L, Ma X, Liu Q, Huang F, et al. CUL7 E3 ubiquitin ligase mediates the degradation of activation-induced cytidine deaminase and regulates the Ig class switch recombination in B lymphocytes. J Immunol. 2019;203:269–81.

    Article  CAS  PubMed  Google Scholar 

  50. Lian Y-F, Yuan J, Cui Q, Feng Q-S, Xu M, Bei J-X, et al. Upregulation of KLHDC4 predicts a poor prognosis in human nasopharyngeal carcinoma. PLoS ONE 2016;11:e0152820.

Download references

Acknowledgements

We thank Dr Li Zhang for kindly providing lung cancer cell lines. This work was supported by the Special Reserach Program of Sun Yat-sen University Cancer Center to Y-XZ; the National Special Research Program of China for Important Infectious Diseases (2018ZX10302103 and 2017ZX10202102), the Important Key Program of NSFC (81730060), and the Joint-Innovation Program in Healthcare for Special Scientific Research Projects of Guangzhou (201803040002) to HZ; the Natural Science Foundation of Guangdong, China (Excellent Youth Foundation) and the Fundamental Research Funds for the Central Universities to MX.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: HZ, Y-XZ. Funding acquisition: HZ, Y-XZ, MX. Performed the experiments: YL, SMY, Y-FL, SW. Data analysis: YL, YWL, Y-FL, SMY, RL, XTZ. Administrative, technical, or material support: MX, XZ, LF, Q-SF. Writing and revision of the manuscript: YL, YWL, HZ, Y-XZ.

Corresponding authors

Correspondence to Yi-Xin Zeng or Hui Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, Y., Yan, S. et al. CRL2KLHDC3 mediates p14ARF N-terminal ubiquitylation degradation to promote non-small cell lung carcinoma progression. Oncogene 41, 3104–3117 (2022). https://doi.org/10.1038/s41388-022-02318-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02318-6

This article is cited by

Search

Quick links