Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibitor of DNA binding 2 (ID2) regulates the expression of developmental genes and tumorigenesis in ewing sarcoma

Abstract

Sarcomas are difficult to treat and the therapy, even when effective, is associated with long-term and life-threatening side effects. In addition, the treatment regimens for many sarcomas, including Ewing sarcoma, rhabdomyosarcoma, and osteosarcoma, are relatively unchanged over the past two decades, indicating a critical lack of progress. Although differentiation-based therapies are used for the treatment of some cancers, the application of this approach to sarcomas has proven challenging. Here, using a CRISPR-mediated gene knockout approach, we show that Inhibitor of DNA Binding 2 (ID2) is a critical regulator of developmental-related genes and tumor growth in vitro and in vivo in Ewing sarcoma tumors. We also identified that homoharringtonine, which is an inhibitor of protein translation and FDA-approved for the treatment of leukemia, decreases the level of the ID2 protein and significantly reduces tumor growth and prolongs mouse survival in an Ewing sarcoma xenograft model. Furthermore, in addition to targeting ID2, homoharringtonine also reduces the protein levels of ID1 and ID3, which are additional members of the ID family of proteins with well-described roles in tumorigenesis, in multiple types of cancer. Overall, these results provide insight into developmental regulation in Ewing sarcoma tumors and identify a novel, therapeutic approach to target the ID family of proteins using an FDA-approved drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CRISPR/Cas9-mediated knockout of ID2 in Ewing sarcoma cell lines impairs growth in vitro and in vivo.
Fig. 2: Overexpression of ID2 in NIH3T3 cells increases tumorigenesis in vitro and in vivo.
Fig. 3: ID2 regulates the expression of developmental genes in Ewing sarcoma cells.
Fig. 4: Homoharringtonine (HHT) inhibits protein synthesis and reduces levels of ID proteins in Ewing sarcoma cell lines.
Fig. 5: HHT reduces the levels of the ID1, ID2, and ID3 proteins in sarcoma cell lines.

Similar content being viewed by others

References

  1. Balamuth NJ, Womer RB. Ewing’s sarcoma. Lancet Oncol. 2010;11:184–92.

    Article  CAS  PubMed  Google Scholar 

  2. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359:162–5.

    Article  CAS  PubMed  Google Scholar 

  3. Riggi N, Suva M-L, Stamenkovic I. Ewing’s sarcoma origin: from duel to duality. Expert Rev Anticancer Ther. 2009;9:1025–30.

    Article  PubMed  Google Scholar 

  4. Lessnick SL, Ladanyi M. Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets. Annu Rev Pathol. 2012;7:145–59.

    Article  CAS  PubMed  Google Scholar 

  5. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell. 2007;11:421–9.

    Article  CAS  PubMed  Google Scholar 

  6. Sole A, Grossetête S, Heintzé M, Babin L, Zaïdi S, Revy P. Unraveling Ewing sarcoma tumorigenesis originating from patient-derived Mesenchymal Stem Cells. Cancer Res. 2021;81:4994–5006. https://doi.org/10.1158/0008-5472.CAN-20-3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leacock SW, Basse AN, Chandler GL, Kirk AM, Rakheja D, Amatruda JF. A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech. 2012;5:95–106.

    Article  CAS  PubMed  Google Scholar 

  8. Eliazer S, Spencer J, Ye D, Olson E, Ilaria RL. Alteration of mesodermal cell differentiation by EWS/FLI-1, the oncogene implicated in Ewing’s sarcoma. Mol Cell Biol. 2003;23:482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Potikyan G, France KA, Carlson MRJ, Dong J, Nelson SF, Denny CT. Genetically defined EWS/FLI1 model system suggests mesenchymal origin of Ewing’s family tumors. Lab Invest. 2008;88:1291–302.

    Article  CAS  PubMed  Google Scholar 

  10. Torchia EC, Jaishankar S, Baker SJ. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res. 2003;63:3464–8.

    CAS  PubMed  Google Scholar 

  11. Riggi N, Cironi L, Provero P, Suvà M-L, Kaloulis K, Garcia-Echeverria C, et al. Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res. 2005;65:11459–68.

    Article  CAS  PubMed  Google Scholar 

  12. Riggi N, Suvà M-L, Suvà D, Cironi L, Provero P, Tercier S, et al. EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 2008;68:2176–85.

    Article  CAS  PubMed  Google Scholar 

  13. Svoboda LK, Harris A, Bailey NJ, Schwentner R, Tomazou E, von Levetzow C, et al. Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of developmental transcription programs. Epigenetics 2014;9:1613–25.

    Article  PubMed  Google Scholar 

  14. von Levetzow C, Jiang X, Gwye Y, von Levetzow G, Hung L, Cooper A, et al. Modeling initiation of Ewing sarcoma in human neural crest cells. PLoS One. 2011;6:e19305.

    Article  CAS  Google Scholar 

  15. Behjati S, Gilbertson RJ, Pfister SM. Maturation block in childhood cancer. Cancer Disco. 2021;11:542–4.

    Article  Google Scholar 

  16. Gordon DJ, Motwani M, Pellman D. Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells. Oncogene. 2016;35:3092–102.

    Article  CAS  PubMed  Google Scholar 

  17. Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14:77–91.

    Article  CAS  PubMed  Google Scholar 

  18. Perk J, Iavarone A, Benezra R. Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer. 2005 Aug;5:603–14.

    Article  CAS  PubMed  Google Scholar 

  19. Park H-R, Jung WW, Kim HS, Santini-Araujo E, Kalil RK, Bacchini P, et al. Upregulation of the oncogenic helix-loop-helix protein Id2 in Ewing sarcoma. Tumori. 2006;92:236–40.

    Article  CAS  PubMed  Google Scholar 

  20. Fukuma M, Okita H, Hata J-I, Umezawa A. Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma. Oncogene. 2003;22:1–9.

    Article  CAS  PubMed  Google Scholar 

  21. Nishimori H, Sasaki Y, Yoshida K, Irifune H, Zembutsu H, Tanaka T, et al. The Id2 gene is a novel target of transcriptional activation by EWS-ETS fusion proteins in Ewing family tumors. Oncogene. 2002;21:8302–9.

    Article  CAS  PubMed  Google Scholar 

  22. Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res. 2006;66:5574–81.

    Article  CAS  PubMed  Google Scholar 

  23. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 1994;8:1270–84.

    Article  CAS  PubMed  Google Scholar 

  25. Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal. 2017;15:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lee J, Kim K, Kim JH, Jin HM, Choi HK, Lee S-H, et al. Id helix-loop-helix proteins negatively regulate TRANCE-mediated osteoclast differentiation. Blood. 2006;107:2686–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004;279:32941–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kreider BL, Benezra R, Rovera G, Kadesch T. Inhibition of myeloid differentiation by the helix-loop-helix protein Id. Science. 1992;255:1700–2.

    Article  CAS  PubMed  Google Scholar 

  29. Ruzinova MB, Benezra R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 2003;13:410–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ogata T, Wozney JM, Benezra R, Noda M. Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc Natl Acad Sci USA. 1993;90:9219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990;61:49–59.

    Article  CAS  PubMed  Google Scholar 

  32. Lasorella A, Rothschild G, Yokota Y, Russell RG, Iavarone A. Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol Cell Biol. 2005;25:3563–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nair R, Teo WS, Mittal V, Swarbrick A. ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther. 2014;22:1407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao Z, Bo Z, Gong W, Guo Y. Inhibitor of differentiation 1 (id1) in cancer and cancer therapy. Int J Med Sci. 2020;17:995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev. 1992;6:1466–79.

    Article  CAS  PubMed  Google Scholar 

  36. Meng J, Liu K, Shao Y, Feng X, Ji Z, Chang B, et al. ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy. Cell Death Dis. 2020;11:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bae WJ, Koo BS, Lee SH, Kim JM, Rho YS, Lim JY, et al. Inhibitor of DNA binding 2 is a novel therapeutic target for stemness of head and neck squamous cell carcinoma. Br J Cancer. 2017;117:1810–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature. 2000;407:592–8.

    Article  CAS  PubMed  Google Scholar 

  39. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R, et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature. 1999;401:670–7.

    Article  CAS  PubMed  Google Scholar 

  40. Sachdeva R, Wu M, Smiljanic S, Kaskun O, Ghannad-Zadeh K, Celebre A, et al. ID1 is critical for tumorigenesis and regulates chemoresistance in glioblastoma. Cancer Res. 2019;79:4057–71.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Z, He H, Wang C, Tao B, Zhou H, Dong Y, et al. Downregulation of Id2 increases chemosensitivity of glioma. Tumour Biol. 2015;36:4189–96.

    Article  CAS  PubMed  Google Scholar 

  42. Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, et al. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 2011;146:918–30.

    Article  CAS  PubMed  Google Scholar 

  43. Benezra R. The Id proteins: targets for inhibiting tumor cells and their blood supply. Biochim Biophys Acta. 2001;1551:F39–47.

    CAS  PubMed  Google Scholar 

  44. Greig RG, Koestler TP, Trainer DL, Corwin SP, Miles L, Kline T, et al. Tumorigenic and metastatic properties of “normal” and ras-transfected NIH/3T3 cells. Proc Natl Acad Sci USA. 1985;82:3698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winer ES, DeAngelo DJ. A review of omacetaxine: A chronic myeloid leukemia treatment resurrected. Oncol Ther. 2018;6:9–20.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bajikar SS, Wang C-C, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-suppressor inactivation of GDF11 occurs by precursor sequestration in triple-negative breast cancer. Dev Cell. 2017;43:418–435. e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Merritt N, Garcia K, Rajendran D, Lin Z-Y, Zhang X, Mitchell KA. et al. TAZ-CAMTA1 and YAP-TFE3 alter the TAZ/YAP transcriptome by recruiting the ATAC histone acetyltransferase complex. Elife. 2021;10:e62857. https://doi.org/10.7554/eLife.62857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Benezra R, Davis RL, Lassar A, Tapscott S, Thayer M, Lockshon D, et al. Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Ann NY Acad Sci. 1990;599:1–11.

    Article  CAS  PubMed  Google Scholar 

  49. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21:3448–9.

    Article  CAS  PubMed  Google Scholar 

  50. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019;47:W212–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Samanta J, Kessler JA. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development. 2004;131:4131–42.

    Article  CAS  PubMed  Google Scholar 

  52. Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun. 2018;9:1366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hancock JD, Lessnick SL. A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle. 2008;7:250–6.

    Article  CAS  PubMed  Google Scholar 

  54. Bounpheng MA, Dimas JJ, Dodds SG, Christy BA. Degradation of Id proteins by the ubiquitin-proteasome pathway. FASEB J. 1999;13:2257–64.

    Article  CAS  PubMed  Google Scholar 

  55. Trausch-Azar JS, Lingbeck J, Ciechanover A, Schwartz AL. Ubiquitin-Proteasome-mediated degradation of Id1 is modulated by MyoD. J Biol Chem. 2004;279:32614–9.

    Article  CAS  PubMed  Google Scholar 

  56. Goss KL, Koppenhafer SL, Waters T, Terry WW, Wen K-K, Wu M, et al. The translational repressor 4E-BP1 regulates RRM2 levels and functions as a tumor suppressor in Ewing sarcoma tumors. Oncogene. 2021;40:564–77.

    Article  CAS  PubMed  Google Scholar 

  57. Goss KL, Koppenhafer SL, Harmoney KM, Terry WW, Gordon DJ. Inhibition of CHK1 sensitizes Ewing sarcoma cells to the ribonucleotide reductase inhibitor gemcitabine. Oncotarget 2017;8:87016–32.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goss KL, Gordon DJ. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma. Oncotarget. 2016;7:63003–19.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ohmura S, Marchetto A, Orth MF, Li J, Jabar S, Ranft A. et al. Translational evidence for RRM2 as a prognostic biomarker and therapeutic target in Ewing sarcoma. Mol Cancer.2021;20:97. https://doi.org/10.1186/s12943-021-01393-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waters T, Goss KL, Koppenhafer SL, Terry WW, Gordon DJ. Eltrombopag inhibits the proliferation of Ewing sarcoma cells via iron chelation and impaired DNA replication. BMC Cancer. 2020;20:1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwentner R, Herrero-Martin D, Kauer MO, Mutz CN, Katschnig AM, Sienski G, et al. The role of miR-17-92 in the miRegulatory landscape of Ewing sarcoma. Oncotarget 2017;8:10980–93.

    Article  PubMed  Google Scholar 

  62. Patel AV, Chaney KE, Choi K, Largaespada DA, Kumar AR, Ratner N. An shrna screen identifies MEIS1 as a driver of malignant peripheral nerve sheath tumors. EBioMedicine. 2016;9:110–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhao G-S, Zhang Q, Cao Y, Wang Y, Lv Y-F, Zhang Z-S, et al. High expression of ID1 facilitates metastasis in human osteosarcoma by regulating the sensitivity of anoikis via PI3K/AKT depended suppression of the intrinsic apoptotic signaling pathway. Am J Transl Res. 2019;11:2117–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hao L, Liao Q, Tang Q, Deng H, Chen L. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway. Biochem Biophys Res Commun. 2016;470:643–9.

    Article  CAS  PubMed  Google Scholar 

  65. Wang L, Man N, Sun X-J, et al. Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood. 2015;126:640–50. Blood. 2016;128:1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, et al. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther. 2013;12:2651–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tam WF, Gu T-L, Chen J, Lee BH, Bullinger L, Fröhling S, et al. Id1 is a common downstream target of oncogenic tyrosine kinases in leukemic cells. Blood. 2008;112:1981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang Y-H, Hu J, Chen F, Lecomte N, Basnet H, David CJ, et al. ID1 mediates escape from TGFβ tumor suppression in pancreatic. Cancer Cancer Discov 2020;10:142–57.

    Article  CAS  PubMed  Google Scholar 

  69. Khoury JD. Ewing sarcoma family of tumors. Adv Anat Pathol. 2005;12:212–20.

    Article  PubMed  Google Scholar 

  70. Lasorella A, Boldrini R, Dominici C, Donfrancesco A, Yokota Y, Inserra A, et al. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res. 2002;62:301–6.

    CAS  PubMed  Google Scholar 

  71. Veerasamy M, Phanish M, Dockrell MEC. Smad mediated regulation of inhibitor of DNA binding 2 and its role in phenotypic maintenance of human renal proximal tubule epithelial cells. PLoS One. 2013;8:e51842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ligon KL, Fancy SPJ, Franklin RJM, Rowitch DH. Olig gene function in CNS development and disease. Glia. 2006;54:1–10.

    Article  PubMed  Google Scholar 

  73. Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109:61–73.

    Article  CAS  PubMed  Google Scholar 

  74. Szu J, Wojcinski A, Jiang P, Kesari S. Impact of the olig family on neurodevelopmental disorders. Front Neurosci. 2021;15:659601.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maire CL, Buchet D, Kerninon C, Deboux C, Baron-Van Evercooren A, Nait-Oumesmar B. Directing human neural stem/precursor cells into oligodendrocytes by overexpression of Olig2 transcription factor. J Neurosci Res. 2009;87:3438–46.

    Article  CAS  PubMed  Google Scholar 

  76. Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, et al. Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci. 2009;10:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Maire CL, Wegener A, Kerninon C, Nait Oumesmar B. Gain-of-function of Olig transcription factors enhances oligodendrogenesis and myelination. Stem Cells. 2010;28:1611–22.

    Article  CAS  PubMed  Google Scholar 

  78. Islam MS, Tatsumi K, Okuda H, Shiosaka S, Wanaka A. Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem Int. 2009;54:192–8.

    Article  CAS  PubMed  Google Scholar 

  79. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A-L, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci USA. 2017;114:E2243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lasorella A, Iavarone A, Israel MA. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol Cell Biol. 1996;16:2570–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jen Y, Manova K, Benezra R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn. 1996;207:235–52.

    Article  CAS  PubMed  Google Scholar 

  82. Riechmann V, van Crüchten I, Sablitzky F. The expression pattern of Id4, a novel dominant negative helix-loop-helix protein, is distinct from Id1, Id2 and Id3. Nucleic Acids Res. 1994;22:749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Howard TP, Oberlick EM, Rees MG, Arnoff TE, Pham M-T, Brenan L, et al. Rhabdoid tumors are sensitive to the protein-translation inhibitor homoharringtonine. Clin Cancer Res. 2020;26:4995–5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lam SSY, Ho ESK, He B-L, Wong W-W, Cher C-Y, Ng NKL, et al. Homoharringtonine (omacetaxine mepesuccinate) as an adjunct for FLT3-ITD acute myeloid leukemia. Sci Transl Med. 2016;8:359ra129.

    Article  PubMed  CAS  Google Scholar 

  85. Bell BA, Chang MN, Weinstein HJ. A phase II study of Homoharringtonine for the treatment of children with refractory or recurrent acute myelogenous leukemia: a pediatric oncology group study. Med Pediatr Oncol. 2001;37:103–7.

    Article  CAS  PubMed  Google Scholar 

  86. Chen X, Tang Y, Chen J, Chen R, Gu L, Xue H, et al. Homoharringtonine is a safe and effective substitute for anthracyclines in children younger than 2 years old with acute myeloid leukemia. Front Med. 2019;13:378–87.

    Article  PubMed  Google Scholar 

  87. Jin J, Wang J-X, Chen F-F, Wu D-P, Hu J, Zhou J-F, et al. Homoharringtonine-based induction regimens for patients with de-novo acute myeloid leukaemia: a multicentre, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2013;14:599–608.

    Article  CAS  PubMed  Google Scholar 

  88. Wang L, Man N, Sun X-J, Tan Y, García-Cao M, Liu F, et al. Regulation of AKT signaling by Id1 controls t(8;21) leukemia initiation and progression. Blood. 2015;126:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Venneti S, Le P, Martinez D, Xie SX, Sullivan LM, Rorke-Adams LB, et al. Malignant rhabdoid tumors express stem cell factors, which relate to the expression of EZH2 and Id proteins. Am J Surg Pathol. 2011;35:1463–72.

    Article  PubMed  Google Scholar 

  90. Zhang C, Lam SSY, Leung GMK, Tsui S-P, Yang N, Ng NKL, et al. Sorafenib and omacetaxine mepesuccinate as a safe and effective treatment for acute myeloid leukemia carrying internal tandem duplication of Fms-like tyrosine kinase 3. Cancer. 2020;126:344–53.

    Article  CAS  PubMed  Google Scholar 

  91. Wojnarowicz PM, Lima E, Silva R, Ohnaka M, Lee SB, Chin Y, et al. A small-molecule Pan-Id antagonist inhibits pathologic ocular neovascularization. Cell Rep. 2019;29:62–75. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wojnarowicz PM, Escolano MG, Huang Y-H, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. mTORC1/2 and protein translation regulate levels of CHK1 and the sensitivity to CHK1 inhibitors in ewing sarcoma cells. Mol Cancer Ther. 2018;17:2676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Henry Keen for assistance with the analysis of the RNA-seq data. DJG is supported by a University of Iowa Dance Marathon Award, a Holden Comprehensive Cancer Center Sarcoma Multidisciplinary Oncology Group Seed Grant, Sammy’s Superheroes, The Matt Morrell and Natalie Sanchez Pediatric Cancer Research Foundation, Aiming for a Cure, and NIH Grant R37-CA217910. This work was also supported by a grant (P30CA086862) from the NCI, administered through the Holden Comprehensive Cancer Center at The University of Iowa. The authors would like to acknowledge use of the University of Iowa Flow Cytometry Facility and the DNA sequencing facility (Genomics Division of the Iowa Institute of Human Genetics) which are supported, in part, by the University of Iowa Carver College of Medicine and the Holden Comprehensive Cancer Center (NCI P30CA086862).

Author information

Authors and Affiliations

Authors

Contributions

DJG was responsible for experimental design and conception, data collection and analysis, and interpretation of the results. WWT and PMG contributed to experimental design and data analysis. SLK, KLG, EV, EC, and JO were responsible for collecting and analyzing the data. All authors contributed to the preparation and revision of the manuscript.

Corresponding author

Correspondence to David J. Gordon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koppenhafer, S.L., Goss, K.L., Voigt, E. et al. Inhibitor of DNA binding 2 (ID2) regulates the expression of developmental genes and tumorigenesis in ewing sarcoma. Oncogene 41, 2873–2884 (2022). https://doi.org/10.1038/s41388-022-02310-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02310-0

Search

Quick links