Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MUTYH-associated tumor syndrome: The other face of MAP

Abstract

MUTYH gene is involved in the base excision repair (BER) mechanism and its pathogenic alterations are associated with colorectal polyposis and cancer. MUTYH-associated polyposis (MAP) is a condition which is inherited in an autosomal recessive manner. MAP patients, beyond colorectal cancer (CRC), may develop other types of tumors, including duodenal, breast, ovarian, pancreatic, bladder and skin cancers. Carriers of biallelic MUTYH likely pathogenic/pathogenic variants exhibit a high lifetime risk of CRC, though cancer risk evidence becomes less clear when monoallelic carriers and extraintestinal tumors are considered. However, several studies recently reported an increased genetic susceptibility to cancer also for carriers of germline monoallelic MUTYH mutations. Moreover, experimental evidence highlighted the MUTYH involvement in many other biological functions. In future, MUTYH mutation carriers might benefit from new target therapies involving the use of PD-1 or KRAS inhibitors. Therefore, “MUTYH-associated tumor syndrome” might be the most appropriate term, due to the multiplicity of tumors observed in MAP patients and different biological contexts in which MUTYH acts as a “playmaker”. In this Review, we will investigate the impact of germline mono- and biallelic MUTYH mutations on cancer risk, providing a proposal for clinical surveillance of mutation carriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromosome localization and functional domains of MUTYH.
Fig. 2: Mechanism of DNA damage repair induced by MUTYH.

Similar content being viewed by others

References

  1. Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, et al. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat Genet. 2002;30:227–32.

    Article  CAS  PubMed  Google Scholar 

  2. Wallace SS, Murphy DL, Sweasy JB. Base excision repair and cancer. Cancer Lett. 2012;327:73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones S. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G:C->T:A mutations. Hum Mol Genet. 2002;11:2961–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RKS, et al. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations inMYH. N Engl J Med. 2003;348:791–9.

    Article  PubMed  Google Scholar 

  5. Farrington SM, Tenesa A, Barnetson R, Wiltshire A, Prendergast J, Porteous M, et al. Germline susceptibility to colorectal cancer due to base-excision repair gene defects. Am J Hum Genet. 2005;77:112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lubbe SJ, Di Bernardo MC, Chandler IP, Houlston RS. Clinical implications of the colorectal cancer risk associated with MUTYH mutation. J Clin Oncol. 2009;27:3975–80.

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen M, Hes FJ, Nagengast FM, Weiss MM, Mathus-Vliegen EM, Morreau H, et al. Germline mutations in APC and MUTYH are responsible for the majority of families with attenuated familial adenomatous polyposis. Clin Genet. 2007;71:427–33.

    Article  CAS  PubMed  Google Scholar 

  8. Filipe B, Baltazar C, Albuquerque C, Fragoso S, Lage P, Vitoriano I, et al. APCorMUTYHmutations account for the majority of clinically well-characterized families with FAP and AFAP phenotype and patients with more than 30 adenomas. Clin Genet. 2009;76:242–55.

    Article  CAS  PubMed  Google Scholar 

  9. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufmann A, et al. Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology. 2009;137:1976–85.e1910.

    Article  CAS  PubMed  Google Scholar 

  10. Win AK, Reece JC, Dowty JG, Buchanan DD, Clendenning M, Rosty C, et al. Risk of extracolonic cancers for people with biallelic and monoallelic mutations inMUTYH. Int J Cancer. 2016;139:1557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raetz AG, David SS. When you’re strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair. 2019;80:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Curia MC, Catalano T, Aceto GM. MUTYH: Not just polyposis. World J Clin Oncol. 2020;11:428–49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mazzei F, Viel A, Bignami M. Role of MUTYH in human cancer. Mutat Res/Fundamental Mol Mechanisms Mutagenesis. 2013;743-744:33–43.

    Article  CAS  Google Scholar 

  14. Krokan HE, Bjoras M. Base excision repair. Cold Spring Harb Perspect Biol. 2013;5:a012583–a012583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Halford SER, Rowan AJ, Lipton L, Sieber OM, Pack K, Thomas HJW, et al. Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. Am J Pathol. 2003;162:1545–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipton L, Tomlinson I. The multiple colorectal adenoma phenotype and MYH, a base excision repair gene. Clin Gastroenterol Hepatol. 2004;2:633–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lipton L, Halford SE, Johnson V, Novelli MR, Jones A, Cummings C, et al. Carcinogenesis in MYH-associated polyposis follows a distinct genetic pathway. Cancer Res. 2003;63:7595–9.

    CAS  PubMed  Google Scholar 

  18. Viel A, Bruselles A, Meccia E, Fornasarig M, Quaia M, Canzonieri V, et al. A specific mutational signature associated with DNA 8-Oxoguanine persistence in MUTYH-defective colorectal cancer. EBioMedicine. 2017;20:39–49.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thibodeau ML, Zhao EY, Reisle C, Ch’ng C, Wong H-L, Shen Y, et al. Base excision repair deficiency signatures implicate germline and somatic MUTYH aberrations in pancreatic ductal adenocarcinoma and breast cancer oncogenesis. Mol Case Stud. 2019;5:a003681.

    Article  CAS  Google Scholar 

  20. Scarpa A, Chang DK, Nones K, Corbo V, Patch A-M, Bailey P, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543:65–71.

    Article  CAS  PubMed  Google Scholar 

  21. Pilati C, Shinde J, Alexandrov LB, Assié G, André T, Hélias‐Rodzewicz Z, et al. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J Pathol. 2017;242:10–15.

    Article  CAS  PubMed  Google Scholar 

  22. Ishida H, Lam AK-Y. Pancreatic neuroendocrine neoplasms: Updates on genomic changes in inherited tumour syndromes and sporadic tumours based on WHO classification. Crit Rev Oncol/Hematol. 2022;172:103648.

    Article  Google Scholar 

  23. Grolleman JE, de Voer RM, Elsayed FA, Nielsen M, Weren RDA, Palles C, et al. Mutational signature analysis reveals NTHL1 deficiency to cause a multi-tumor phenotype. Cancer Cell. 2019;35:256–26.e255.

    Article  CAS  PubMed  Google Scholar 

  24. Magrin L, Fanale D, Brando C, Fiorino A, Corsini LR, Sciacchitano R, et al. POLE, POLD1, and NTHL1: The last but not the least hereditary cancer-predisposing genes. Oncogene. 2021;40:5893–901.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas LE, Hurley JJ, Meuser E, Jose S, Ashelford KE, Mort M, et al. Burden and profile of somatic mutation in duodenal adenomas from patients with familial adenomatous- and MUTYH-associated Polyposis. Clin Cancer Res. 2017;23:6721–32.

    Article  CAS  PubMed  Google Scholar 

  26. Chen J, Huang Z, Wu X, Kang J, Ren Y, Gao W, et al. Oxidative stress induces different tissue dependent effects on Mutyh-deficient mice. Free Radic Biol Med. 2019;143:482–93.

    Article  CAS  PubMed  Google Scholar 

  27. Nielsen M, Joerink - van de Beld MC, Jones N, Vogt S, Tops CM, Vasen HFA, et al. Analysis of MUTYH genotypes and colorectal phenotypes in patients with MUTYH-associated polyposis. Gastroenterology. 2009;136:471–6.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas LE, Hurley JJ, Sanchez AA, Aznárez MR, Backman A-S, Bjork J, et al. Duodenal Adenomas and Cancer in MUTYH-associated Polyposis: An International Cohort Study. Gastroenterology. 2021;160:952–4.e954.

    Article  CAS  PubMed  Google Scholar 

  29. Ukaegbu C, Levi Z, Fehlmann TD, Uno H, Chittenden A, Inra JA, et al. Characterizing germline APC and MUTYH variants in Ashkenazi Jews compared to other individuals. Fam Cancer. 2020;20:111–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Barreiro RAS, Sabbaga J, Rossi BM, Achatz MIW, Bettoni F, Camargo AA, et al. Monoallelic deleterious MUTYH germline variants as a driver for tumorigenesis. J Pathol. 2021;256:214–22.

    Article  PubMed  CAS  Google Scholar 

  31. Out AA, Tops CMJ, Nielsen M, Weiss MM, van Minderhout IJHM, Fokkema IFAC, et al. Leiden open variation database of the MUTYH gene. Hum Mutat. 2010;31:1205–15.

    Article  CAS  PubMed  Google Scholar 

  32. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruggieri V, Pin E, Russo MT, Barone F, Degan P, Sanchez M, et al. Loss of MUTYH function in human cells leads to accumulation of oxidative damage and genetic instability. Oncogene. 2012;32:4500–8.

    Article  PubMed  CAS  Google Scholar 

  34. Aretz S, Tricarico R, Papi L, Spier I, Pin E, Horpaopan S, et al. MUTYH-associated polyposis (MAP): evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events. Eur J Hum Genet. 2013;22:923–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Takao M, Yamaguchi T, Eguchi H, Tada Y, Kohda M, Koizumi K, et al. Characteristics of MUTYH variants in Japanese colorectal polyposis patients. Int J Clin Oncol. 2018;23:497–503.

    Article  CAS  PubMed  Google Scholar 

  36. Kdissa A, Brusgaard K, Ksiaa M, Golli L, Hallara O, Ousager LB, et al. c.1227_1228dupGG (p.Glu410Glyfs), a frequent variant in Tunisian patients with MUTYH associated polyposis. Cancer Genet. 2020;240:45–53.

    Article  CAS  PubMed  Google Scholar 

  37. Chmiel NH, Livingston AL, David SS. Insight into the functional consequences of inherited variants of the hMYH Adenine glycosylase associated with colorectal cancer: Complementation Assays with hMYH Variants and Pre-steady-state Kinetics of the Corresponding Mutated E.coli Enzymes. J Mol Biol. 2003;327:431–43.

    Article  CAS  PubMed  Google Scholar 

  38. Pope MA, Chmiel NH, David SS. Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH. DNA Repair. 2005;4:315–25.

    Article  CAS  PubMed  Google Scholar 

  39. Miyaishi A, Osawa K, Osawa Y, Inoue N, Yoshida K, Kasahara M, et al. MUTYH Gln324His gene polymorphism and genetic susceptibility for lung cancer in a Japanese population. J Exp Clin Cancer Res 2009;28:10.

  40. Kasahara M, Osawa K, Yoshida K, Miyaishi A, Osawa Y, Inoue N, et al. Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population. J Exp Clin Cancer Res. 2008;27:49.

  41. Picelli S, Zajac P, Zhou X-L, Edler D, Lenander C, Dalén J, et al. Common variants in human CRC genes as low-risk alleles. Eur J Cancer. 2010;46:1041–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ellis NA, Picelli S, Lorenzo Bermejo J, Chang-Claude J, Hoffmeister M, Fernández-Rozadilla C, et al. Meta-analysis of mismatch repair polymorphisms within the cogent consortium for colorectal cancer susceptibility. PLoS ONE. 2013;8:e72091.

    Article  CAS  Google Scholar 

  43. Singh A, Singh N, Behera D, Sharma S. Genetic investigation of polymorphic OGG1 and MUTYH genes towards increased susceptibility in lung adenocarcinoma and its impact on overall survival of lung cancer patients treated with platinum based chemotherapy. Pathol Oncol Res. 2017;25:1327–40.

    Article  PubMed  CAS  Google Scholar 

  44. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clinicians. 2018;68:394–424.

    Google Scholar 

  45. van Wezel T, de Miranda NFCC, Morreau H, Schubert SA. The missing heritability of familial colorectal cancer. Mutagenesis. 2020;35:221–31.

    Article  PubMed  CAS  Google Scholar 

  46. Grover S, Kastrinos F, Steyerberg EW, Cook EF, Dewanwala A, Burbidge LA, et al. Prevalence and Phenotypes of APC and MUTYH mutations in patients with multiple colorectal adenomas. Jama. 2012;308:485–92.

  47. Stjepanovic N, Moreira L, Carneiro F, Balaguer F, Cervantes A, Balmaña J, et al. Hereditary gastrointestinal cancers: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30:1558–71.

    Article  CAS  PubMed  Google Scholar 

  48. Sutcliffe EG, Bartenbaker Thompson A, Stettner AR, Marshall ML, Roberts ME, Susswein LR, et al. Multi-gene panel testing confirms phenotypic variability in MUTYH-Associated Polyposis. Fam Cancer. 2019;18:203–9.

    Article  CAS  PubMed  Google Scholar 

  49. Urso EDL, Ponz de Leon M, Vitellaro M, Piozzi GN, Bao QR, Martayan A, et al. Definition and management of colorectal polyposis not associated with APC/MUTYH germline pathogenic variants: AIFEG consensus statement. Digestive Liver Dis. 2021;53:409–17.

    Article  CAS  Google Scholar 

  50. Fanale D, Corsini LR, Brando C, Dimino A, Filorizzo C, Magrin L, et al. Impact of different selection approaches for identifying lynch syndrome-related colorectal cancer patients: Unity is strength. Front. Oncol. 2022;12:827822.

  51. Patel R, McGinty P, Cuthill V, Hawkins M, Moorghen M, Clark SK, et al. MUTYH‐associated polyposis – colorectal phenotype and management. Colorectal Dis. 2020;22:1271–8.

    Article  CAS  PubMed  Google Scholar 

  52. Croitoru ME, Cleary SP, Di Nicola N, Manno M, Selander T, Aronson M, et al. Association between biallelic and monoallelic germline MYH gene mutations and colorectal cancer risk. JNCI J Natl Cancer Inst. 2004;96:1631–4.

    Article  CAS  PubMed  Google Scholar 

  53. Tenesa A, Campbell H, Barnetson R, Porteous M, Dunlop M, Farrington SM. Association of MUTYH and colorectal cancer. Br J Cancer. 2006;95:239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Theodoratou E, Campbell H, Tenesa A, Houlston R, Webb E, Lubbe S, et al. A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer. 2010;103:1875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Win AK, Dowty JG, Cleary SP, Kim H, Buchanan DD, Young JP, et al. Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer. Gastroenterology. 2014;146:1208–11.e1205.

    Article  CAS  PubMed  Google Scholar 

  56. Ma X, Zhang B, Zheng W. Genetic variants associated with colorectal cancer risk: Comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut. 2014;63:326–36.

    Article  CAS  PubMed  Google Scholar 

  57. Colas C, Bonadona V, Baert-Desurmont S, Bonnet D, Coulet F, Dhooge M, et al. MUTYH-associated polyposis: Review and update of the French recommendations established in 2012 under the auspices of the National Cancer institute (INCa). Eur J Med Genet. 2020;63:104078.

    Article  PubMed  Google Scholar 

  58. Win AK, Cleary SP, Dowty JG, Baron JA, Young JP, Buchanan DD, et al. Cancer risks for monoallelic MUTYH mutation carriers with a family history of colorectal cancer. Int J Cancer. 2011;129:2256–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jenkins MA, Croitoru ME, Monga N, Cleary SP, Cotterchio M, Hopper JL, et al. Risk of colorectal cancer in monoallelic and biallelic carriers of MYH mutations: A population-based case-family study. Cancer Epidemiol Biomark Prev. 2006;15:312–4.

    Article  CAS  Google Scholar 

  60. Jones N, Vogt S, Nielsen M, Christian D, Wark PA, Eccles D, et al. Increased colorectal cancer incidence in obligate carriers of heterozygous mutations in MUTYH. Gastroenterology. 2009;137:489–94.e481.

    Article  PubMed  Google Scholar 

  61. Balaguer F, Castellví–Bel S, Castells A, Andreu M, Muñoz J, Gisbert JP, et al. Identification of MYH mutation carriers in colorectal cancer: A multicenter, case-control, population-based study. Clin Gastroenterol Hepatol. 2007;5:379–87.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Y, Newcomb PA, Egan KM, Titus-Ernstoff L, Chanock S, Welch R, et al. Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomark Prev. 2006;15:353–8.

    Article  CAS  Google Scholar 

  63. Schubert SA, Ruano D, Tiersma Y, Drost M, Wind N, Nielsen M, et al. Digenic inheritance of MSH6 and MUTYH variants in familial colorectal cancer. Genes, Chromosomes Cancer. 2020;59:697–701.

    Article  CAS  PubMed Central  Google Scholar 

  64. Volkov NM, Yanus GA, Ivantsov AO, Moiseenko FV, Matorina OG, Bizin IV, et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Investigational N. Drugs. 2019;38:894–8.

    Article  CAS  Google Scholar 

  65. Blair HA. Sotorasib: First approval. Drugs. 2021;81:1573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Castillejo A, Vargas G, Castillejo MI, Navarro M, Barberá VM, González S, et al. Prevalence of germline MUTYH mutations among Lynch-like syndrome patients. Eur J Cancer. 2014;50:2241–50.

    Article  CAS  PubMed  Google Scholar 

  67. Yanus GA, Akhapkina TA, Ivantsov AO, Preobrazhenskaya EV, Aleksakhina SN, Bizin IV, et al. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies. Clin Genet. 2018;93:1015–21.

    Article  CAS  PubMed  Google Scholar 

  68. Hong DS, Fakih MG, Strickler JH, Desai J, Durm GA, Shapiro GI, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383:1207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hong DS, Strickler JH, Fakih M, Falchook GS, Li BT, Durm GA, et al. Trial in progress: A phase 1b study of sotorasib, a specific and irreversible KRASG12C inhibitor, as monotherapy in non-small cell lung cancer (NSCLC) with brain metastasis and in combination with other anticancer therapies in advanced solid tumors (CodeBreaK 101). J Clin Oncol. 2021;39:TPS2669–TPS2669.

    Article  Google Scholar 

  70. Kim CJ, Cho YG, Park CH, Kim SY, Nam SW, Lee SH, et al. Genetic alterations of the MYH gene in gastric cancer. Oncogene. 2004;23:6820–2.

    Article  CAS  PubMed  Google Scholar 

  71. Walton S-J, Kallenberg FGJ, Clark SK, Dekker E, Latchford A. Frequency and features of duodenal adenomas in patients with MUTYH-associated polyposis. Clin Gastroenterol Hepatol. 2016;14:986–92.

    Article  PubMed  Google Scholar 

  72. Bulow S. Duodenal adenomatosis in familial adenomatous polyposis. Gut. 2004;53:381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Monahan KJ, Bradshaw N, Dolwani S, Desouza B, Dunlop MG, East JE, et al. Guidelines for the management of hereditary colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG). Gut. 2020;69:411–44.

    Article  CAS  PubMed  Google Scholar 

  74. El Hachem N, Abadie C, Longy M, Colas C, Fert-Ferrer S, Leroux D, et al. Endoscopic phenotype of monoallelic carriers of MUTYH gene mutations in the family of polyposis patients: A prospective study. Dis Colon Rectum. 2019;62:470–5.

    Article  PubMed  Google Scholar 

  75. Daans CG, Ghorbanoghli Z, Velthuizen ME, Vasen HFA, Offerhaus GJA, Lacle MM, et al. Increased prevalence of Barrett’s esophagus in patients with MUTYH-associated polyposis (MAP). Fam Cancer. 2020;19:183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fulk K, LaDuca H, Black MH, Qian D, Tian Y, Yussuf A, et al. Monoallelic MUTYH carrier status is not associated with increased breast cancer risk in a multigene panel cohort. Fam Cancer. 2018;18:197–201.

    Article  CAS  Google Scholar 

  77. Wasielewski M, Out AA, Vermeulen J, Nielsen M, van den Ouweland A, Tops CMJ, et al. Increased MUTYH mutation frequency among Dutch families with breast cancer and colorectal cancer. Breast Cancer Res Treat. 2010;124:635–41.

    Article  CAS  PubMed  Google Scholar 

  78. Rennert G, Lejbkowicz F, Cohen I, Pinchev M, Rennert HS, Barnett-Griness O. MutYH mutation carriers have increased breast cancer risk. Cancer. 2012;118:1989–93.

    Article  CAS  PubMed  Google Scholar 

  79. Vidal AF, Ferraz RS, El-Husny A, Silva CS, Vinasco-Sandoval T, Magalhães L, et al. Comprehensive analysis of germline mutations in northern Brazil: a panel of 16 genes for hereditary cancer-predisposing syndrome investigation. BMC Cancer. 2021;21:363.

  80. Caswell-Jin JL, Gupta T, Hall E, Petrovchich IM, Mills MA, Kingham KE, et al. Racial/ethnic differences in multiple-gene sequencing results for hereditary cancer risk. Genet Med. 2018;20:234–9.

    Article  PubMed  Google Scholar 

  81. Saha T, Smulson M, Rosen EM. BRCA1 regulation of base excision repair pathway. Cell Cycle. 2014;9:2471–2.

    Article  CAS  Google Scholar 

  82. Moscatello C, Di Nicola M, Veschi S, Di Gregorio P, Cianchetti E, Stuppia L, et al. Relationship between MUTYH, OGG1 and BRCA1 mutations and mRNA expression in breast and ovarian cancer predisposition. Mol Clin Oncol. 2020;14:15.

  83. Nones K, Johnson J, Newell F, Patch AM, Thorne H, Kazakoff SH, et al. Whole-genome sequencing reveals clinically relevant insights into the aetiology of familial breast cancers. Ann Oncol. 2019;30:1071–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rizzolo P, Silvestri V, Bucalo A, Zelli V, Valentini V, Catucci I, et al. Contribution of MUTYH Variants to Male Breast Cancer Risk: Results From a Multicenter Study in Italy. Front Oncol. 2018;8:583.

  85. Silva SN, Gomes BC, André S, Félix A, Rodrigues AS, Rueff J. Male and female breast cancer: the two faces of the same genetic susceptibility coin. Breast Cancer Res Treat. 2021;188:295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maguire S, Perraki E, Tomczyk K, Jones ME, Fletcher O, Pugh M, et al. Common susceptibility loci for male breast cancer. JNCI: J Natl Cancer Inst. 2021;113:453–61.

    Article  PubMed  CAS  Google Scholar 

  87. Grasel RS, Felicio PS, de Paula AE, Campacci N, Garcia FAdO, de Andrade ES, et al. Using Co-segregation and Loss of Heterozygosity Analysis to Define the Pathogenicity of Unclassified Variants in Hereditary Breast Cancer Patients. Front Oncol. 2020;10:571330.

  88. Thompson AB, Sutcliffe EG, Arvai K, Roberts ME, Susswein LR, Marshall ML, et al. Monoallelic MUTYH pathogenic variants ascertained via multi-gene hereditary cancer panels are not associated with colorectal, endometrial, or breast cancer. Familial Cancer 2022.

  89. Samadder NJ, Riegert-Johnson D, Boardman L, Rhodes D, Wick M, Okuno S, et al. Comparison of universal genetic testing vs guideline-directed targeted testing for patients with hereditary cancer syndrome. JAMA Oncol. 2021;7:230.

    Article  PubMed  Google Scholar 

  90. Fanale D, Incorvaia L, Filorizzo C, Bono M, Fiorino A, Calò V, et al. Detection of germline mutations in a cohort of 139 patients with bilateral breast cancer by multi-gene panel testing: Impact of pathogenic variants in other genes beyond BRCA1/2. Cancers. 2020;12:2415.

    Article  CAS  PubMed Central  Google Scholar 

  91. Bono M, Fanale D, Incorvaia L, Cancelliere D, Fiorino A, Calò V, et al. Impact of deleterious variants in other genes beyond BRCA1/2 detected in breast/ovarian and pancreatic cancer patients by NGS-based multi-gene panel testing: Looking over the hedge. ESMO Open. 2021;6:100235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW. ACG clinical guideline: Genetic Testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015;110:223–62.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nieuwenhuis MH, Vogt S, Jones N, Nielsen M, Hes FJ, Sampson JR, et al. Evidence for accelerated colorectal adenoma–carcinoma progression inMUTYH-associated polyposis? Gut. 2012;61:734–8.

    Article  CAS  PubMed  Google Scholar 

  94. van Leerdam ME, Roos VH, van Hooft JE, Dekker E, Jover R, Kaminski MF, et al. Endoscopic management of polyposis syndromes: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2019;51:877–95.

    Article  PubMed  Google Scholar 

  95. Gupta S, Provenzale D, Llor X, Halverson AL, Grady W, Chung DC, et al. NCCN guidelines insights: Genetic/Familial high-risk assessment: Colorectal, Version 2.2019. J Natl Compr Cancer Netw. 2019;17:1032–41.

    Article  Google Scholar 

  96. Hutchcraft ML, Gallion HH, Kolesar JM. MUTYH as an Emerging Predictive Biomarker in Ovarian Cancer. Diagnostics. 2021;11:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Skates SJ, Greene MH, Buys SS, Mai PL, Brown P, Piedmonte M, et al. Early detection of ovarian cancer using the risk of ovarian cancer algorithm with frequent CA125 Testing in women at increased familial risk – combined results from two screening trials. Clin Cancer Res. 2017;23:3628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kacerovska D, Drlik L, Slezakova L, Michal M, Stehlik J, Sedivcova M, et al. Cutaneous sebaceous lesions in a patient with MUTYH-associated polyposis mimicking muir-torre syndrome. Am J Dermatopathol. 2016;38:915–23.

    Article  PubMed  Google Scholar 

  99. Ponti G, Ponz de Leon M, Maffei S, Pedroni M, Losi L, Di Gregorio C, et al. Attenuated familial adenomatous polyposis and Muir-Torre syndrome linked to compound biallelic constitutional MYH gene mutations. Clin Genet. 2005;68:442–7.

    Article  CAS  PubMed  Google Scholar 

  100. Pervaiz MA, Eppolito A, Schmidt K. Papillary thyroid cancer in a patient with MUTYH-associated polyposis (MAP). Fam Cancer. 2010;9:595–7.

    Article  PubMed  Google Scholar 

  101. Santos LS, Branco SC, Silva SN, Azevedo AP, Gil OM, Manita I, et al. Polymorphisms in base excision repair genes and thyroid cancer risk. Oncol Rep. 2012;28:1859–68.

    Article  CAS  PubMed  Google Scholar 

  102. Wang M, Zhu F, Luo N, Han T, Wang M. A case report of a patient with first phenotype of papillary thyroid carcinoma and heterochronous multiprimary tumor harboring germline MUTYH Arg19*/Gly286Glu mutations. Oral Oncol. 2021;112:104987.

    Article  CAS  PubMed  Google Scholar 

  103. Vasen HFA, Moslein G, Alonso A, Aretz S, Bernstein I, Bertario L, et al. Guidelines for the clinical management of familial adenomatous polyposis (FAP). Gut. 2008;57:704–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Chiara Drago for the English language revision.

Author information

Authors and Affiliations

Authors

Contributions

LM, DF, CB, AR and VB conceived, wrote, and critically revised the manuscript with the contribution of LRC, UR, MDP, VG, EP, TDBR, SV, and GP; Literature data were acquired and analyzed by LM, DF, CB, LRC, UR, MDP, VG, EP, and TDBR; The figures of the manuscript were conceived and designed by CB, UR, MDP, VG, and TDBR; The tables were conceived and designed by LM, UR, MDP, VG, and TDBR; LRC, SV, GP, AR, and VB participated to the critical revision of the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Antonio Russo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magrin, L., Fanale, D., Brando, C. et al. MUTYH-associated tumor syndrome: The other face of MAP. Oncogene 41, 2531–2539 (2022). https://doi.org/10.1038/s41388-022-02304-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02304-y

This article is cited by

Search

Quick links