Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Matriptase-2/NR4A3 axis switches TGF-β action toward suppression of prostate cancer cell invasion, tumor growth, and metastasis

Abstract

Dysregulation of pericellular proteolysis is strongly implicated in cancer metastasis through alteration of cell invasion and the microenvironment. Matriptase-2 (MT-2) is a membrane-anchored serine protease which can suppress prostate cancer (PCa) cell invasion. In this study, we showed that MT-2 was down-regulated in PCa and could suppress PCa cell motility, tumor growth, and metastasis. Using microarray and biochemical analysis, we found that MT-2 shifted TGF-β action towards its tumor suppressor function by repressing epithelial-to-mesenchymal transition (EMT) and promoting Smad2 phosphorylation and nuclear accumulation to upregulate two TGF-β1 downstream effectors (p21 and PAI-1), culminating in hindrance of PCa cell motility and malignant growth. Mechanistically, MT-2 could dramatically up-regulate the expression of nuclear receptor NR4A3 via iron metabolism in PCa cells. MT-2-induced NR4A3 further coactivated Smad2 to activate p21 and PAI-1 expression. In addition, NR4A3 functioned as a suppressor of PCa and mediated MT-2 signaling to inhibit PCa tumorigenesis and metastasis. These results together indicate that NR4A3 sustains MT-2 signaling to suppress PCa cell invasion, tumor growth, and metastasis, and serves as a contextual factor for the TGF-β/Smad2 signaling pathway in favor of tumor suppression via promoting p21 and PAI-1 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MT-2 downregulation in PCa tissues and MT-2-suppresses PCa cell motility, tumor growth, and metastasis.
Fig. 2: MT-2 suppresses TGF-β1-induces EMT and PC3 cell invasion.
Fig. 3: MT-2-altered the effect of TGF-β1 on Smad2 phosphorylation, PCa cell colony formation, and invasion, as well as the expression of p21 and PAI-1.
Fig. 4: Identification of NR4A3, an important transcription factor for MT-2 that alters PCa cell response to TGF-β with respect to EMT, PCa colony formation, and invasion.
Fig. 5: NR4A3 enhanced the phosphorylation levels of nuclear Smad2 and TGF-β1-induced p21 and PAI-1 expression.
Fig. 6: Involvement of iron in MT-2 action on NR4A3 expression and PCa cell invasion.
Fig. 7: NR4A3 mediated MT-2-suppressed PCa tumor growth and metastasis.
Fig. 8: Scheme of MT-2-shifted TGF-β action toward suppression of PCa progression.

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941–53.

    Article  CAS  PubMed  Google Scholar 

  2. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  4. Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7:800–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sevenich L, Joyce JA. Pericellular proteolysis in cancer. Genes Dev. 2014;28:2331–47. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ramsay AJ, Reid JC, Velasco G, Quigley JP, Hooper JD. The type II transmembrane serine protease matriptase-2-identification, structural features, enzymology, expression pattern and potential roles. Front Biosci. 2008;13:569–79.

    Article  CAS  PubMed  Google Scholar 

  7. Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8:502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Folgueras AR, de Lara FM, Pendas AM, Garabaya C, Rodriguez F, Astudillo A, et al. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 2008;112:2539–45.

    Article  CAS  PubMed  Google Scholar 

  9. Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet. 2006;38:531–9.

    Article  CAS  PubMed  Google Scholar 

  10. Parr C, Sanders AJ, Davies G, Martin T, Lane J, Mason MD, et al. Matriptase-2 inhibits breast tumor growth and invasion and correlates with favorable prognosis for breast cancer patients. Clin Cancer Res. 2007;13:3568–76.

    Article  CAS  PubMed  Google Scholar 

  11. Sanders AJ, Parr C, Martin TA, Lane J, Mason MD, Jiang WG. Genetic upregulation of matriptase-2 reduces the aggressiveness of prostate cancer cells in vitro and in vivo and affects FAK and paxillin localisation. J Cell Physiol. 2008;216:780–9. (Research Support, Non-U.S. Gov’t)

    Article  CAS  PubMed  Google Scholar 

  12. Webb SL, Sanders AJ, Mason MD, Jiang WG. The influence of matriptase-2 on prostate cancer in vitro: a possible role for beta-catenin. Oncol Rep. 2012;28:1491–7.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng MF, Lin LH, Huang MS, Lee HS, Ji DD, Lin CS, et al. Downexpression of matriptase-2 correlates with tumor progression and clinical prognosis in oral squamous-cell carcinoma. Appl Immunohistochem Mol Morphol. 2017;25:481–8.

    Article  CAS  PubMed  Google Scholar 

  14. Tuhkanen H, Hartikainen JM, Soini Y, Velasco G, Sironen R, Nykopp TK, et al. Matriptase-2 gene (TMPRSS6) variants associate with breast cancer survival, and reduced expression is related to triple-negative breast cancer. Int J Cancer. 2013;133:2334–40.

    Article  CAS  PubMed  Google Scholar 

  15. Heldin CH, Moustakas A. Signaling receptors for TGF-beta family members. Cold Spring Harb Perspect Biol. 2016;1:8.

  16. Massague J. TGFbeta in cancer. Cell. 2008;134:215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84. (Review)

    Article  CAS  PubMed  Google Scholar 

  18. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998;17:3091–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santibanez JF. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett. 2006;580:5385–91.

    Article  CAS  PubMed  Google Scholar 

  21. Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S. Frequency of Smad gene mutations in human cancers. Cancer Res. 1997;57:2578–80.

    CAS  PubMed  Google Scholar 

  22. Graham CH. Effect of transforming growth factor-beta on the plasminogen activator system in cultured first trimester human cytotrophoblasts. Placenta. 1997;18:137–43.

    Article  CAS  PubMed  Google Scholar 

  23. Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des. 2004;10:39–49. (Research Support, Non-U.S. Gov‘t Review)..

  24. Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res. 2014;16:428.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kwaan HC, Mazar AP, McMahon BJ. The apparent uPA/PAI-1 paradox in cancer: more than meets the eye. Semin Thromb Hemost. 2013;39:382–91.

    Article  CAS  PubMed  Google Scholar 

  26. Dong-Le Bourhis X, Lambrecht V, Boilly B. Transforming growth factor beta 1 and sodium butyrate differentially modulate urokinase plasminogen activator and plasminogen activator inhibitor-1 in human breast normal and cancer cells. Br J Cancer. 1998;77:396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bohm L, Serafin A, Akudugu J, Fernandez P, van der Merwe A, Aziz NA. uPA/PAI-1 ratios distinguish benign prostatic hyperplasia and prostate cancer. J Cancer Res Clin Oncol. 2013;139:1221–8. (Research Support, Non-U.S. Gov’t)

    Article  PubMed  CAS  Google Scholar 

  28. Rodriguez-Calvo R, Tajes M, Vazquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets. 2017;21:291–304.

    Article  CAS  PubMed  Google Scholar 

  29. Ranhotra HS. The NR4A orphan nuclear receptors: mediators in metabolism and diseases. J Recept Signal Transduct Res. 2015;35:184–8.

    Article  CAS  PubMed  Google Scholar 

  30. Safe S, Jin UH, Hedrick E, Reeder A, Lee SO. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Mol Endocrinol. 2014;28:157–72.

    Article  PubMed  CAS  Google Scholar 

  31. Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J, et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med. 2007;13:730–5. (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t)

    Article  CAS  PubMed  Google Scholar 

  32. Yeh CM, Chang LY, Lin SH, Chou JL, Hsieh HY, Zeng LH, et al. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer. Sci Rep. 2016;6:31690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao XG, Hu JY, Tang J, Yi W, Zhang MY, Deng R, et al. miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis. 2019;10:479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fedorova O, Petukhov A, Daks A, Shuvalov O, Leonova T, Vasileva E, et al. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene. 2019;38:2108–22.

    Article  CAS  PubMed  Google Scholar 

  35. Palumbo-Zerr K, Zerr P, Distler A, Fliehr J, Mancuso R, Huang J, et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-beta signaling and fibrosis. Nat Med. 2015;21:150–8.

    Article  CAS  PubMed  Google Scholar 

  36. Igawa T, Lin FF, Lee MS, Karan D, Batra SK, Lin MF. Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate. 2002;50:222–35.

    Article  CAS  PubMed  Google Scholar 

  37. Deutsch AJA, Rinner B, Pichler M, Prochazka K, Pansy K, Bischof M, et al. NR4A3 Suppresses Lymphomagenesis through Induction of Proapoptotic Genes. Cancer Res. 2017;77:2375–86.

    Article  CAS  PubMed  Google Scholar 

  38. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995;270:21645–51.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez M, Galy B, Schwanhaeusser B, Blake J, Bahr-Ivacevic T, Benes V, et al. Iron regulatory protein-1 and −2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood. 2011;118:e168–179.

    Article  CAS  PubMed  Google Scholar 

  41. Yeh HW, Lee SS, Chang CY, Lang YD, Jou YS. A new switch for TGFbeta in cancer. Cancer Res. 2019;79:3797–805.

    Article  CAS  PubMed  Google Scholar 

  42. Buck A, Buchholz M, Wagner M, Adler G, Gress T, Ellenrieder V. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer. Mol Cancer Res. 2006;4:861–72.

    Article  CAS  PubMed  Google Scholar 

  43. Xu J, Acharya S, Sahin O, Zhang Q, Saito Y, Yao J, et al. 14-3-3zeta turns TGF-beta’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell. 2015;27:177–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yeh HW, Hsu EC, Lee SS, Lang YD, Lin YC, Chang CY, et al. PSPC1 mediates TGF-beta1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol. 2018;20:479–91.

    Article  CAS  PubMed  Google Scholar 

  45. Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, et al. Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene. 2010;29:1351–61.

    Article  CAS  PubMed  Google Scholar 

  46. Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, et al. CCT6A suppresses SMAD2 and promotes prometastatic TGF-beta signaling. J Clin Investig. 2017;127:1725–40.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tu WH, Thomas TZ, Masumori N, Bhowmick NA, Gorska AE, Shyr Y, et al. The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia. 2003;5:267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perttu MC, Martikainen PM, Huhtala HS, Blauer M, Tammela TL, Tuohimaa PJ, et al. Altered levels of Smad2 and Smad4 are associated with human prostate carcinogenesis. Prostate Cancer Prostatic Dis. 2006;9:185–9.

    Article  CAS  PubMed  Google Scholar 

  49. Vela D, Vela-Gaxha Z. Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med. 2018;50:e436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13:342–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huynh LK, Hipolito CJ, Ten Dijke P. A perspective on the development of TGF-beta inhibitors for cancer treatment. Biomolecules. 2019;9:743.

Download references

Acknowledgements

We appreciate the service of the First Core Laboratory of National Taiwan University College of Medicine. We thank the Laboratory Animal Core Facility (ABRC, Academia Sinica) for their services and Ms. Miranda Loney (Editor, ABRC) for critical suggestions for editing this article. This study was supported by National Health Research Institutes grants NHRI-EX106-10401BI and NHRI-EX109-10725BI, Ministry of Science and Technology grants MOST 104-2320-B-002-044-MY3, MOST 105-2911-I-002-521, MOST 106-2320-B-002-046-MY3 and MOST 108-2320-B-002-024-MY3, MOST 110-2320-B-002-067-MY3, National Taiwan University grants NTU105R89612, NTU107L890504 and NTU110L893503 to M.S. Lee, and NTUH Grant UN110-029 to M.J. Chen and M.S. Lee.

Author information

Authors and Affiliations

Authors

Contributions

HYL executed this study and wrote the manuscript. CJK, SRW, and SWL provided experimental skills consultation. TYL and YCL performed the TCGA bioinformatics analysis. CAH, HHL, HPH, and PWH assisted animal studies. HFT and CFL provided the materials for in vitro assay. MJC and KHC provided technique consultation. MSL supervised the study and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming-Shyue Lee.

Ethics declarations

Competing interests

The authors declare no Competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HY., Ko, CJ., Lo, TY. et al. Matriptase-2/NR4A3 axis switches TGF-β action toward suppression of prostate cancer cell invasion, tumor growth, and metastasis. Oncogene 41, 2833–2845 (2022). https://doi.org/10.1038/s41388-022-02303-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02303-z

Search

Quick links