Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel TENM3–ALK fusion is an alternate mechanism for ALK activation in neuroblastoma

Abstract

The identification of molecular events underlying the pathogenesis of neuroblastoma can likely result in improved clinical outcomes for this disease. In this study, a translocation within chromosome 2p and 4q was found to bring about the formation of an in-frame fusion gene that was composed of portions of the teneurin transmembrane protein 3 (TENM3, also known as ODZ3) gene and the anaplastic lymphoma kinase (ALK) gene in tumor cells from patients with neuroblastoma. Expression of the full length TENM3–ALK cDNA in NIH-3T3 cells led to the formation of a fusion protein that: (1) possesses constitutive tyrosine kinase activity, (2) induces strong activation of the downstream targets of extracellular signal-regulated kinase (ERK), protein kinase B (a.k.a. AKT), and signal transducer and activator of transcription 3 (STAT3), (3) provokes oncogenic transformation in NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic mice, and (4) possesses sensitivity to ALK inhibitors in vitro and in vivo. Our findings demonstrated that patients with neuroblastoma may express a transforming fusion kinase, which is a promising candidate for a therapeutic target and a diagnostic molecular marker for neuroblastoma. The in-frame 5′ partner gene that fuses with ALK has not been reported previously in neuroblastoma. Our data provide novel biological insights into the mechanism of ALK activation due to translocation, with implications for neuroblastoma tumorigenesis, and could be useful as a vital marker for the accurate diagnosis of this type of neuroblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The translocations involving ALK and TENM3 breakpoints.
Fig. 2: The pathological analysis of TENM 3-ALK-rearranged NIH3T3 cells by ALK immunohistochemistry and immunofluorescence staining.
Fig. 3: Kinase activities of TENM3–ALK or ALK ex 1–11 deleted mutant and their downstream status.
Fig. 4: Effects of Lorlatinib or Crizotinib in cells expressing TENM3–ALK.
Fig. 5: In vivo transforming activity of TENM3–ALK inhibition of the growth of NIH3T3 cells expressing TENM3–ALK by a chemical inhibitor of ALK.

Similar content being viewed by others

References

  1. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mazzocco K, Defferrari R, Sementa AR, Garaventa A, Longo L, De Mariano M, et al. Genetic abnormalities in adolescents and young adults with neuroblastoma: a report from the Italian Neuroblastoma group. Pediatr Blood Cancer. 2015;62:1725–32.

    Article  CAS  PubMed  Google Scholar 

  3. Mossé YP, Deyell RJ, Berthold F, Nagakawara A, Ambros PF, Monclair T, et al. Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer. 2014;61:627–35.

    Article  PubMed  Google Scholar 

  4. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263:1281–4.

    Article  CAS  PubMed  Google Scholar 

  6. Roskoski R. Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res. 2013;68:68–94.

    Article  CAS  PubMed  Google Scholar 

  7. Della Corte CM, Viscardi G, Di Liello R, Fasano M, Martinelli E, Troiani T. et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17:30. https://doi.org/10.1186/s12943-018-0776-2.

  8. Okubo J, Takita J, Chen Y, Oki K, Nishimura R, Kato M, et al. Aberrant activation of ALK kinase by a novel truncated form ALK protein in neuroblastoma. Oncogene. 2012;31:4667–76.

    Article  CAS  PubMed  Google Scholar 

  9. Cazes A, Louis-Brennetot C, Mazot P, Dingli F, Lombard B, Boeva V, et al. Characterization of rearrangements involving the ALK gene reveals a novel truncated form associated with tumor aggressiveness in neuroblastoma. Cancer Res. 2013;73:195–204.

    Article  CAS  PubMed  Google Scholar 

  10. Fransson S, Hansson M, Ruuth K, Djos A, Berbegall A, Javanmardi N, et al. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors. Genes Chromosomes Cancer. 2015;54:99–109.

    Article  CAS  PubMed  Google Scholar 

  11. Matsuno R, Akiyama K, Toyama D, Ikeda H, Yamamoto S. Adolescent pulmonary metastatic neuroblastoma with ALK rearrangement: a case report. Pediatr Int. 2020;62:507–9.

    Article  PubMed  Google Scholar 

  12. Seki M, Nishimura R, Yoshida K, Shimamura T, Shiraishi Y, Sato Y, et al. Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma. Nat Commun. 2015;6:7557.

    Article  PubMed  Google Scholar 

  13. Tang Z, Wang L, Tang G, Medeiros LJ. Fluorescence in situ hybridization (FISH) for detecting anaplastic lymphoma kinase. Int J Mol Sci. 2019;20:3939.

  14. Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, et al. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet. 2017;49:1274–81.

    Article  CAS  PubMed  Google Scholar 

  15. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol. 2003;31:1007–14.

    Article  CAS  PubMed  Google Scholar 

  16. Ceccon M, Metrlo MEB, Mologni L, Poggio T, Varecio LM, Menotti M, et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35:3854–65.

    Article  CAS  PubMed  Google Scholar 

  17. Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 2007;6:3314–22.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, et al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem. 2014;57:4720–44.

    Article  CAS  PubMed  Google Scholar 

  19. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.

    Article  CAS  PubMed  Google Scholar 

  21. Arregui CO, Balsamo J, Lilien J. Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem Res. 2000;25:95–105.

    Article  CAS  PubMed  Google Scholar 

  22. Young TR, Leamey CA. Teneurins: important regulators of neural circuitry. Int J Biochem Cell Biol. 2009;41:990–3.

    Article  CAS  PubMed  Google Scholar 

  23. Ziegler A, Corvalán A, Roa I, Brañes JA, Wollscheid B. Teneurin protein family: an emerging role in human tumorigenesis and drug resistance. Cancer Lett. 2012;326:1–7.

    Article  CAS  PubMed  Google Scholar 

  24. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483:589–93.

    Article  CAS  PubMed  Google Scholar 

  25. Feng K, Zhou XH, Oohashi T, Mörgelin M, Lustig A, Hirakawa S, et al. All four members of the Ten-m/Odz family of transmembrane proteins form dimers. J Biol Chem. 2002;277:26128–35.

    Article  CAS  PubMed  Google Scholar 

  26. Stein H, Foss HD, Dürkop H, Marafioti T, Delsol G, Pulford K, et al. CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96:3681–95.

    Article  CAS  PubMed  Google Scholar 

  27. Martelli MP, Sozzi G, Hernandez L, Pettirossi V, Navarro A, Conte D, et al. EML4-ALK rearrangement in non-small cell lung cancer and non-tumor lung tissues. Am J Pathol. 2009;174:661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S. Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene. 1994;9:1567–74.

    CAS  PubMed  Google Scholar 

  29. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  30. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203.

    Article  CAS  PubMed  Google Scholar 

  31. Tabbó F, Barreca A, Piva R, Inghirami G. Group ET-CLS. ALK Signaling and target therapy in anaplastic large cell lymphoma. Front Oncol. 2012;2:41.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene. 2001;20:5623–37.

    Article  CAS  PubMed  Google Scholar 

  33. Mano H. Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 2008;99:2349–55.

    Article  CAS  PubMed  Google Scholar 

  34. Richards MW, Law EW, Rennalls LP, Busacca S, O’Regan L, Fry AM, et al. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain. Proc Natl Acad Sci USA. 2014;111:5195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Richards MW, O’Regan L, Roth D, Montgomery JM, Straube A, Fry AM, et al. Microtubule association of EML proteins and the EML4-ALK variant 3 oncoprotein require an N-terminal trimerization domain. Biochem J. 2015;467:529–36.

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi K, Choi YL, Soda M, Inamura K, Togashi Y, Hatano S, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res. 2008;14:6618–24.

    Article  CAS  PubMed  Google Scholar 

  37. Choi YL, Lira ME, Hong M, Kim RN, Choi SJ, Song JY, et al. A novel fusion of TPR and ALK in lung adenocarcinoma. J Thorac Oncol. 2014;9:563–6.

    Article  CAS  PubMed  Google Scholar 

  38. Amano Y, Ishikawa R, Sakatani T, Ichinose J, Sunohara M, Watanabe K, et al. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3. Biochem Biophys Res Commun. 2015;457:457–60.

    Article  CAS  PubMed  Google Scholar 

  39. Grande E, Bolós MV, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther. 2011;10:569–79.

    Article  CAS  PubMed  Google Scholar 

  40. Oohashi T, Zhou XH, Feng K, Richter B, Mörgelin M, Perez MT, et al. Mouse ten-m/Odz is a new family of dimeric type II transmembrane proteins expressed in many tissues. J Cell Biol. 1999;145:563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer. 2008;8:11–23.

    Article  CAS  PubMed  Google Scholar 

  42. Pulford K, Morris SW, Turturro F. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol. 2004;199:330–58.

    Article  CAS  PubMed  Google Scholar 

  43. Bischof D, Pulford K, Mason DY, Morris SW. Role of the nucleophosmin (NPM) portion of non-Hodgkin’s lymphoma-asscociated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol. 1997;17:2312–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mason DY, Pulford KA, Bischof D, Kuefer MU, Butler LH, Lamant L, et al. Nuclear localization of the nucleophosmin-anaplastic lymphoma kinase is not required for malignant transformation. Cancer Res. 1998;58:1057–62.

    CAS  PubMed  Google Scholar 

  45. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455:971–4.

    Article  CAS  PubMed  Google Scholar 

  46. Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Carén H, Abel F, Kogner P, Martinsson T. High incidence of DNA mutations and gene amplifications of the ALK gene in advanced sporadic neuroblastoma tumours. Biochem J. 2008;416:153–9.

    Article  PubMed  CAS  Google Scholar 

  48. George RE, Sanda T, Hanna M, Fröhling S, Luther W 2nd, Zhang J, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature. 2008;455:975–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Janoueix-Lerosey I, Lequin D, Brugières L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.

    Article  CAS  PubMed  Google Scholar 

  50. Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci. 2017;108:1913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwak EL, Bang YJ, Cambridge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cambridge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS, et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2018;379:2027–39.

    Article  Google Scholar 

  53. Infarinato NR, Park JH, Krytska K, Ryles HT, Sano R, Szigety KM, et al. The ALK/ROS1 inhibitor PF-06463922 overcomes primary resistance to crizotinib in ALK-Driven neuroblastoma. Cancer Discov. 2016;6:96–107.

    Article  CAS  PubMed  Google Scholar 

  54. Passoni L, Longo L, Collini P, Coluccia AM, Bozzi F, Podda M, et al. Mutation-independent anaplastic lymphoma kinase overexpression in poor prognosis neuroblastoma patients. Cancer Res. 2009;69:7338–46.

    Article  CAS  PubMed  Google Scholar 

  55. Hiwatari M, Taki T, Taketani T, Taniwaki M, Sugita K, Okuya M, et al. Fusion of an AF4-related gene, LAF4, to MLL in childhood acute lymphoblastic leukemia with t(2;11)(q11;q23). Oncogene. 2003;22:2851–5.

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Dacic S, Pantanowitz L, Khalbuss WE, Nikiforova MN, Monaco SE. Correlation of cytomorphology and molecular findings in EGFR+, KRAS+, and ALK+ lung carcinomas. Am J Clin Pathol. 2014;141:420–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Matsumura, K. Yin, and F. Saito for their excellent technical assistance, Dr. T. Kitamura (Division of Cellular Therapy/Division of Stem Cell Signaling, The Institute of Medical Sciences, The University of Tokyo, Japan) for the kind gift of expression vector pMYs-IRES-Neo. The authors also wish to express their appreciation to K. Chiba and H. Tanaka (The University of Tokyo) for the supercomputer. This work was supported by JSPS KAKENHI Grant Numbers JP19J11112, JP17H04224, JP18K19467, and JP20H00528; Project for Cancer Research and Therapeutic Evolution (P-CREATE; grant no. JP19cm0106509h9904), and Practical Research for Innovative Cancer Control (grant no. JP19ck0106468h001) from the Japan Agency for Medical Research and Development (AMED); Princess Takamatsu Cancer Research Fund. This research also used the computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (hp140230, hp160219, and hp150232) (SM and SO).

Author information

Authors and Affiliations

Authors

Contributions

MH and JT wrote the paper; MH, TN, and MS analyzed the data; MH performed the experiments; RM and SY analyzed the FISH data; KY, SM, and SO developed the bioinformatics pipelines; MK, ASO, MS, KW, and JT provided conceptual advice; and MH and JT designed the study. All authors read and approved the final paper.

Corresponding author

Correspondence to Mitsuteru Hiwatari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiwatari, M., Seki, M., Matsuno, R. et al. Novel TENM3–ALK fusion is an alternate mechanism for ALK activation in neuroblastoma. Oncogene 41, 2789–2797 (2022). https://doi.org/10.1038/s41388-022-02301-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02301-1

Search

Quick links