Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHAMP1-POGZ counteracts the inhibitory effect of 53BP1 on homologous recombination and affects PARP inhibitor resistance

Abstract

DNA double-strand break (DSB) repair-pathway choice regulated by 53BP1 and BRCA1 contributes to genome stability. 53BP1 cooperates with the REV7-Shieldin complex and inhibits DNA end resection to block homologous recombination (HR) and affects the sensitivity to inhibitors for poly (ADP-ribose) polymerases (PARPs) in BRCA1-deficient cells. Here, we show that a REV7 binding protein, CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), has an opposite function of REV7 in DSB repair and promotes HR through DNA end resection together with POGZ (POGO transposable element with ZNF domain). CHAMP1 was recruited to laser-micro-irradiation-induced DSB sites and promotes HR, but not NHEJ. CHAMP1 depletion suppressed the recruitment of BRCA1, but not the recruitment of 53BP1, suggesting that CHAMP1 regulates DSB repair pathway in favor of HR. Depletion of either CHAMP1 or POGZ impaired the recruitment of phosphorylated RPA2 and CtIP (CtBP-interacting protein) at DSB sites, implying that CHAMP1, in complex with POGZ, promotes DNA end resection for HR. Furthermore, loss of CHAMP1 and POGZ restored the sensitivity to a PARP inhibitor in cells depleted of 53BP1 together with BRCA1. These data suggest that CHAMP1and POGZ counteract the inhibitory effect of 53BP1 on HR by promoting DNA end resection and affect the resistance to PARP inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CHAMP1 is involved in DSB repair and promotes the recruitment of BRCA1 to DSB sites.
Fig. 2: CHAMP1 plays a role in HR together with POGZ.
Fig. 3: CHAMP1 and POGZ play a role in HR by promoting DNA end resection.
Fig. 4: The C-terminal region is responsible for the role of CHAMP1 in DNA end resection.
Fig. 5: CHAMP1 recruits CtIP to DSB sites and affects the sensitivity to a PARP inhibitor.

Similar content being viewed by others

References

  1. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    Article  CAS  PubMed  Google Scholar 

  2. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47:497–510.

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Lisby M, Symington LS. RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell. 2013;50:589–600.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell. 2008;134:981–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowalczykowski SC. An Overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect Biol. 2015;7:a016410.

  6. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. You Z, Shi LZ, Zhu Q, Wu P, Zhang YW, Basilio A, et al. CtIP links DNA double-strand break sensing to resection. Mol Cell. 2009;36:954–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Escribano-Diaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkac J, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 2013;49:872–83.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004;95:866–71.

    Article  CAS  PubMed  Google Scholar 

  10. Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Itoh G, Kanno S, Uchida KS, Chiba S, Sugino S, Watanabe K, et al. CAMP (C13orf8, ZNF828) is a novel regulator of kinetochore-microtubule attachment. EMBO J. 2011;30:130–44.

    Article  CAS  PubMed  Google Scholar 

  12. Hara K, Taharazako S, Ikeda M, Fujita H, Mikami Y, Kikuchi S, et al. Dynamic feature of mitotic arrest deficient 2-like protein 2 (MAD2L2) and structural basis for its interaction with chromosome alignment-maintaining phosphoprotein (CAMP). J Biol Chem. 2017;292:17658–67.

    Article  CAS  PubMed  Google Scholar 

  13. Sale JE. REV7/MAD2L2: the multitasking maestro emerges as a barrier to recombination. EMBO J. 2015;34:1609–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, et al. A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem. 2000;275:4391–7.

    Article  CAS  PubMed  Google Scholar 

  15. Pfleger CM, Salic A, Lee E, Kirschner MW. Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1. Genes Dev. 2001;15:1759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen J, Fang G. MAD2B is an inhibitor of the anaphase-promoting complex. Genes Dev. 2001;15:1765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J, Wevers BA, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection. Nature. 2015;521:537–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature. 2015;521:541–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A, Kremer M, et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell. 2018;173:972–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mirman Z, Lottersberger F, Takai H, Kibe T, Gong Y, Takai K, et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Polalpha-dependent fill-in. Nature. 2018;560:112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. Nature. 2018;560:122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dev H, Chiang TW, Lescale C, de Krijger I, Martin AG, Pilger D, et al. Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat Cell Biol. 2018;20:954–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Isidor B, Kury S, Rosenfeld JA, Besnard T, Schmitt S, Joss S, et al. De Novo Truncating Mutations in the Kinetochore-Microtubules Attachment Gene CHAMP1 Cause Syndromic Intellectual Disability. Hum Mutat. 2016;37:354–8.

    Article  CAS  PubMed  Google Scholar 

  25. Fanti L, Pimpinelli S. HP1: a functionally multifaceted protein. Curr Opin Genet Dev. 2008;18:169–74.

    Article  CAS  PubMed  Google Scholar 

  26. Zeng W, Ball AR Jr., Yokomori K. HP1: heterochromatin binding proteins working the genome. Epigenetics. 2010;5:287–92.

    Article  CAS  PubMed  Google Scholar 

  27. Yearim A, Gelfman S, Shayevitch R, Melcer S, Glaich O, Mallm JP, et al. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 2015;10:1122–34.

    Article  CAS  PubMed  Google Scholar 

  28. Abe Y, Sako K, Takagaki K, Hirayama Y, Uchida KS, Herman JA, et al. HP1-assisted Aurora B kinase activity prevents chromosome segregation errors. Dev Cell. 2016;36:487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, et al. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol. 2010;12:719–27.

    Article  CAS  PubMed  Google Scholar 

  30. Baude A, Aaes TL, Zhai B, Al-Nakouzi N, Oo HZ, Daugaard M, et al. Hepatoma-derived growth factor-related protein 2 promotes DNA repair by homologous recombination. Nucleic Acids Res. 2016;44:2214–26.

    Article  CAS  PubMed  Google Scholar 

  31. Gudmundsdottir B, Gudmundsson KO, Klarmann KD, Singh SK, Sun L, Singh S, et al. POGZ Is required for silencing mouse embryonic beta-like hemoglobin and human fetal hemoglobin expression. Cell Rep. 2018;23:3236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hempel M, Cremer K, Ockeloen CW, Lichtenbelt KD, Herkert JC, Denecke J, et al. De Novo mutations in CHAMP1 cause intellectual disability with severe speech impairment. Am J Hum Genet. 2015;97:493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanaka AJ, Cho MT, Retterer K, Jones JR, Nowak C, Douglas J, et al. De novo pathogenic variants in CHAMP1 are associated with global developmental delay, intellectual disability, and dysmorphic facial features. Cold Spring Harb Mol Case Stud. 2016;2:a000661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ye Y, Cho MT, Retterer K, Alexander N, Ben-Omran T, Al-Mureikhi M, et al. De novo POGZ mutations are associated with neurodevelopmental disorders and microcephaly. Cold Spring Harb Mol Case Stud. 2015;1:a000455.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee YJ, Park SJ, Ciccone SL, Kim CR, Lee SH. An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis. 2006;27:446–53.

    Article  CAS  PubMed  Google Scholar 

  36. Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, et al. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol. 2020;22:87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adachi N, So S, Koyama H. Loss of nonhomologous end joining confers camptothecin resistance in DT40 cells. Implications for the repair of topoisomerase I-mediated DNA damage. J Biol Chem. 2004;279:37343–8.

    Article  CAS  PubMed  Google Scholar 

  38. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13:2633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S, et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene. 2011;30:2135–46.

    Article  CAS  PubMed  Google Scholar 

  40. Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, et al. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood. 2004;103:4659–65.

    Article  CAS  PubMed  Google Scholar 

  41. Marechal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res. 2015;25:9–23.

    Article  CAS  PubMed  Google Scholar 

  42. Cruz-Garcia A, Lopez-Saavedra A, Huertas P. BRCA1 accelerates CtIP-mediated DNA-end resection. Cell Rep. 2014;9:451–9.

    Article  CAS  PubMed  Google Scholar 

  43. Caron MC, Sharma AK, O’Sullivan J, Myler LR, Ferreira MT, Rodrigue A, et al. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat Commun. 2019;10:2954.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010;141:243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010;17:688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bochum S, Berger S, Martens UM. Olaparib. Recent Results Cancer Res. 2018;211:217–33.

    Article  CAS  PubMed  Google Scholar 

  47. Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010;142:967–80.

    Article  CAS  PubMed  Google Scholar 

  48. Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–23.

    Article  CAS  PubMed  Google Scholar 

  49. Simonetta M, de Krijger I, Serrat J, Moatti N, Fortunato D, Hoekman L, et al. H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2. Cell Cycle. 2018;17:124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tomida J, Takata KI, Bhetawal S, Person MD, Chao HP, Tang DG et al. FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells. EMBO J. 2018;37:e99543.

  51. Sharma S, Hicks JK, Chute CL, Brennan JR, Ahn JY, Glover TW, et al. REV1 and polymerase zeta facilitate homologous recombination repair. Nucleic Acids Res. 2012;40:682–91.

    Article  CAS  PubMed  Google Scholar 

  52. Bluhm A, Casas-Vila N, Scheibe M, Butter F. Reader interactome of epigenetic histone marks in birds. Proteomics. 2016;16:427–36.

    Article  CAS  PubMed  Google Scholar 

  53. Stessman HAF, Willemsen MH, Fenckova M, Penn O, Hoischen A, Xiong B, et al. Disruption of POGZ Is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 2016;98:541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White J, Beck CR, Harel T, Posey JE, Jhangiani SN, Tang S, et al. POGZ truncating alleles cause syndromic intellectual disability. Genome Med. 2016;8:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tan B, Zou Y, Zhang Y, Zhang R, Ou J, Shen Y, et al. A novel de novo POGZ mutation in a patient with intellectual disability. J Hum Genet. 2016;61:357–9.

    Article  PubMed  Google Scholar 

  56. Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Article  CAS  Google Scholar 

  57. Rulten SL, Caldecott KW. DNA strand break repair and neurodegeneration. DNA Repair (Amst). 2013;12:558–67.

    Article  CAS  Google Scholar 

  58. Sack LM, Davoli T, Li MZ, Li Y, Xu Q, Naxerova K, et al. Profound tissue specificity in proliferation control underlies cancer drivers and aneuploidy patterns. Cell. 2018;173:499–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garrity M, Kavus H, Rojas-Vasquez M, Valenzuela I, Larson A, Reed S et al. Neurodevelopmental phenotypes in individuals with pathogenic variants in CHAMP1. Cold Spring Harb Mol Case Stud. 2021;7:a006092.

  60. Fradet-Turcotte A, Canny MD, Escribano-Diaz C, Orthwein A, Leung CC, Huang H, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013;499:50–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sorensen CS, et al. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol. 2012;19:803–10.

    Article  CAS  PubMed  Google Scholar 

  62. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421:961–6.

    Article  CAS  PubMed  Google Scholar 

  63. Silverman J, Takai H, Buonomo SB, Eisenhaber F, de Lange T. Human Rif1, ortholog of a yeast telomeric protein, is regulated by ATM and 53BP1 and functions in the S-phase checkpoint. Genes Dev. 2004;18:2108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Unno J, Itaya A, Taoka M, Sato K, Tomida J, Sakai W, et al. FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep. 2014;7:1039–47.

    Article  CAS  PubMed  Google Scholar 

  65. Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R, et al. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell. 2010;40:976–87.

    Article  CAS  PubMed  Google Scholar 

  66. Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J, et al. Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci. 2005;118:4153–62.

    Article  CAS  PubMed  Google Scholar 

  67. Nakajima S, Lan L, Kanno S, Usami N, Kobayashi K, Mori M, et al. Replication-dependent and -independent responses of RAD18 to DNA damage in human cells. J Biol Chem. 2006;281:34687–95.

    Article  CAS  PubMed  Google Scholar 

  68. Ikeda M, Tanaka K. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Sci Rep. 2017;7:8794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hino M, Iemura K, Ikeda M, Itoh G, Tanaka K. Chromosome alignment-maintaining phosphoprotein CHAMP1 plays a role in cell survival through regulating Mcl-1 expression. Cancer Sci. 2021;112:3711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. H. Kurumizaka (The University of Tokyo) for an antibody against Rad51, Dr. M. Takata (Kyoto University) for U2OS cells stably expressing GFP-tagged CtIP, and Dr. T. Hirota (The Cancer Institute of Japanese Foundation for Cancer Research) for HeLa Kyoto cells. The authors also thank members of the K.T. laboratory for discussions, Y. Yoshizaki for his critical reading of the manuscript, and A. Harata for technical assistance. This work was supported by JSPS KAKENHI Grant Numbers 24370078, 24650616, 15H04368, 18H02434 and 17K19615; MEXT KAKENHI Grant Numbers 26116501, 16H01296, and 18H04896; and grants from the Takeda Science Foundation, Princess Takamatsu Cancer Research Fund (10-24210), and the Naito Foundation to K.T.

Author information

Authors and Affiliations

Authors

Contributions

AU performed HR and NHEJ assays and laser micro-irradiation. HF, MI, YO, YM, SK, and AY performed rest of the experiments. AU, MI, and KT wrote the manuscript. KT supervised the work.

Corresponding author

Correspondence to Kozo Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, H., Ikeda, M., Ui, A. et al. CHAMP1-POGZ counteracts the inhibitory effect of 53BP1 on homologous recombination and affects PARP inhibitor resistance. Oncogene 41, 2706–2718 (2022). https://doi.org/10.1038/s41388-022-02299-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02299-6

Search

Quick links