Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Liver-specific overexpression of Gab2 accelerates hepatocellular carcinoma progression by activating immunosuppression of myeloid-derived suppressor cells

A Correction to this article was published on 06 May 2022

This article has been updated

Abstract

GRB2-associated-binding protein 2 (Gab2) deletion has a preventive effect of on chronic liver inflammation and hepatocellular carcinoma. This study was aimed to elaborate Gab2-initiated immunoregulation during hepatocarcinogenesis. Compared to wild-type group, liver-specific overexpression of Gab2 mice (L-Gab2) displayed early hepatocarcinogenesis after 5-month diethylnitrosamine (DEN) induction, and accelerated tumor growth after 9-month DEN challenge. More myeloid-derived suppressor cells (MDSCs) were observed in DEN-challenged L-Gab2 mice than that in DEN-treated wild-type mice. Additionally, MDSCs activation-induced tumor angiogenesis capability and immunosuppression function were exceedingly activated in DEN-exposed L-Gab2 mice, which reflected in the increased platelet endothelial cell adhesion molecule (PECAM) and vascular endothelial growth factor (VEGF), and the decreased cytotoxic T lymphocytes. Mechanistically, DEN-challenged L-Gab2 mice produced more IL-6, and IL-6 depletion significantly deprived Gab2-overexpression-mediated tumor-promotion phenomena, accompanied by the impairment of MDSCs-initiated immunosuppression function. MDSCs isolated from IL-6-depleted L-Gab2 mice or inactivating MDSCs partly restored the immune function of cytotoxic T cells. Of note, MDSCs gene signatures had a significant association with the increased Gab2 or IL6 in hepatoma specimens. Collectively, L-Gab2 mice accelerated hepatoma progression possibly through activating IL-6-initiated the activation of MDSCs. This study provides a novel insights for exploring the role of Gab2 in autoimmune tolerance during hepatocarcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of Gab2 overexpression on early hepatocarcinogenesis.
Fig. 2: Effects of Gab2 overexpression on tumor growth.
Fig. 3: Measurement of MDSCs accumulation and activity in WT and L-Gab2 mice.
Fig. 4: Role of IL-6 knockdown on tumor growth in L-Gab2 mice.
Fig. 5: Role of IL-6 knockdown on MDSCs activation in L-Gab2 mice.
Fig. 6: Association analysis among Gab2, MDSCs and IL-6 in human liver cancer specimens.

Similar content being viewed by others

Data availability

Data were generated by the authors and included in the article.

Change history

References

  1. Chen Z, Xie H, Hu M, Huang T, Hu Y, Sang N, et al. Recent progress in treatment of hepatocellular carcinoma. Am J Cancer Res. 2020;10:2993–3036.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  4. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics, 2012. Ca-Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  5. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013;144:512–27.

    Article  PubMed  Google Scholar 

  6. Saviano A, Roehlen N, Virzi A, Roca Suarez AA, Hoshida Y, Lupberger J, et al. Stromal and Immune Drivers of Hepatocarcinogenesis. In: Hoshida Y, editor. Hepatocellular Carcinoma: Translational Precision Medicine Approaches. Cham (CH)2019. p. 317–31.

  7. Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol. 2018;9:2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schrader J. The role of MDSCs in hepatocellular carcinoma-in vivo veritas? J Hepatol. 2013;59:921–3.

    Article  PubMed  Google Scholar 

  9. Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2013;2:e24117.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Atretkhany KN, Drutskaya MS. Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy. Biochem (Mosc). 2016;81:1274–83.

    Article  CAS  Google Scholar 

  11. Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32:19–25.

    Article  CAS  PubMed  Google Scholar 

  12. Beury DW, Parker KH, Nyandjo M, Sinha P, Carter KA, Ostrand-Rosenberg S. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J Leukoc Biol. 2014;96:1109–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ke Y, Wu D, Princen F, Nguyen T, Pang Y, Lesperance J, et al. Role of Gab2 in mammary tumorigenesis and metastasis. Oncogene 2007;26:4951–60.

    Article  CAS  PubMed  Google Scholar 

  14. Ding CB, Luo JM, Yu WN, Gao SY, Yang LW, Chen C, et al. Gab2 is a novel prognostic factor for colorectal cancer patients. Int J Clin Exp Patho. 2015;8:2779–86.

    Google Scholar 

  15. Lee AW, Mao Y, Penninger JM, Yu S. Gab2 promotes colony-stimulating factor 1-regulated macrophage expansion via alternate effectors at different stages of development. Mol Cell Biol. 2011;31:4563–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo X, Li T, Xu Y, Xu X, Zhu Z, Zhang Y, et al. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice. J Biol Chem. 2017;292:14003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep. 2015;12:4007–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng J, Zhong Y, Chen S, Sun Y, Huang L, Kang Y, et al. Gab2 mediates hepatocellular carcinogenesis by integrating multiple signaling pathways. Faseb J. 2017;31:5530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zanconato F, Cordenonsi M, Piccolo S. YAP and TAZ: A signalling hub of the tumour microenvironment. Nat Rev Cancer. 2019;19:454–64.

    Article  CAS  PubMed  Google Scholar 

  20. Choo YW, Kang M, Kim HY, Han J, Kang S, Lee JR, et al. M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. ACS Nano. 2018;12:8977–93.

    Article  CAS  PubMed  Google Scholar 

  21. Chang WL, Masih S, Thadi A, Patwa V, Joshi A, Cooper HS, et al. Plecanatide-mediated activation of guanylate cyclase-C suppresses inflammation-induced colorectal carcinogenesis in Apc(+/Min-FCCC) mice. World J Gastrointest Pharm Ther. 2017;8:47–59.

    Article  Google Scholar 

  22. Zhang YS, Wang F, Cui SX, Qu XJ. Natural dietary compound naringin prevents azoxymethane/dextran sodium sulfate-induced chronic colorectal inflammation and carcinogenesis in mice. Cancer Biol Ther. 2018;19:735–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008;135:234–43.

    Article  CAS  PubMed  Google Scholar 

  24. Arihara F, Mizukoshi E, Kitahara M, Takata Y, Arai K, Yamashita T, et al. Increase in CD14(+)HLA-DR-/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer Immunol Immun. 2013;62:1421–30.

    Article  CAS  Google Scholar 

  25. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009;50:799–807.

    Article  CAS  PubMed  Google Scholar 

  26. Bocanegra M, Bergamaschi A, Kim YH, Miller MA, Rajput AB, Kao J, et al. Focal amplification and oncogene dependency of GAB2 in breast cancer. Oncogene 2010;29:774–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zatkova A, Schoch C, Speleman F, Poppe B, Mannhalter C, Fonatsch C, et al. GAB2 is a novel target of 11q amplification in AML/MDS. Gene Chromosome Canc. 2006;45:798–807.

    Article  CAS  Google Scholar 

  28. Chernoff KA, Bordone L, Horst B, Simon K, Twadell W, Lee K, et al. GAB2 amplifications refine molecular classification of melanoma. Clin Cancer Res. 2009;15:4288–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horst B, Gruvberger-Saal SK, Hopkins BD, Bordone L, Yang Y, Chernoff KA, et al. Gab2-mediated signaling promotes melanoma metastasis. Am J Pathol. 2009;174:1524–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Y, Wu J, Demir A, Castillo-Martin M, Melamed RD, Zhang G, et al. GAB2 induces tumor angiogenesis in NRAS-driven melanoma. Oncogene 2013;32:3627–37.

    Article  CAS  PubMed  Google Scholar 

  31. Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, et al. GAB2 amplification in squamous cell lung cancer of non-smokers. J Korean Med Sci. 2017;32:1784–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Herr R, Halbach S, Heizmann M, Busch H, Boerries M, Brummer T. BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. Oncogene. 2018;37:1576-93

  33. Kapanadze T, Gamrekelashvili J, Ma C, Chan C, Zhao F, Hewitt S, et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol. 2013;59:1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, et al. S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology 2012;136:176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ribechini E, Greifenberg V, Sandwick S, Lutz M. Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immun. 2010;199:273–81.

    Article  CAS  Google Scholar 

  37. Brodaczewska KK, Donskow-Lysoniewska K, Krawczak K, Doligalska M. Role of l-arginine and CD11b+Gr-1+ cells in immunosuppression induced by Heligmosomoides polygyrus bakeri. Parasite Immunol. 2020;42:e12704.

    Article  PubMed  Google Scholar 

  38. Lu LC, Chang CJ, Hsu CH. Targeting myeloid-derived suppressor cells in the treatment of hepatocellular carcinoma: Current state and future perspectives. J Hepatocell Carcinoma. 2019;6:71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deng Y, Cheng J, Fu B, Liu W, Chen G, Zhang Q, et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene 2017;36:1090–101.

    Article  CAS  PubMed  Google Scholar 

  41. Chen S, Kang Y, Sun Y, Zhong Y, Li Y, Deng L, et al. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: A novel therapeutic target for fatty liver disease. J Mol Cell Biol. 2016;8:492–504.

    Article  CAS  PubMed  Google Scholar 

  42. De Cicco P, Ercolano G, Ianaro A. The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120:16–25.

    Article  CAS  PubMed  Google Scholar 

  44. Urakawa S, Yamasaki M, Goto K, Haruna M, Hirata M, Morimoto-Okazawa A, et al. Peri-operative monocyte count is a marker of poor prognosis in gastric cancer: increased monocytes are a characteristic of myeloid-derived suppressor cells. Cancer Immunol Immunother. 2019;68:1341–50.

    Article  CAS  PubMed  Google Scholar 

  45. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–D7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Gene Expression Profiling Interactive Analysis 2.0 online database (GEPIA2). This work was supported by the grants from Natural Science Foundation of China (81802332 and 82103189), Natural Science Foundation of Fujian Province (2020J05302 and 2021J011358), Science Foundation of the Fujian provincial Commission of Health and Family Planning (2021GGB026) and Natural Science Basic Research Program of Shaanxi Province (2021JQ-780).

Author information

Authors and Affiliations

Authors

Contributions

ZL and XL designed the study; SC and JC performed research and drafted the paper; YZ and RL participated in the exploration of MDSCs function and helped in histology and IHC staining; SC and JC performed clinical correlation analysis; SC and RL contributed to the statistical analysis, and all authors polished and approved the final paper.

Corresponding authors

Correspondence to Zhongxian Lu or Xianyang Luo.

Ethics declarations

Ethics approval and consent to participate

We declare that the study includes a statement on ethics approval and consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Cheng, J., Zhong, Y. et al. Liver-specific overexpression of Gab2 accelerates hepatocellular carcinoma progression by activating immunosuppression of myeloid-derived suppressor cells. Oncogene 41, 3316–3327 (2022). https://doi.org/10.1038/s41388-022-02298-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02298-7

This article is cited by

Search

Quick links