Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cullin-9/p53 mediates HNRNPC degradation to inhibit erastin-induced ferroptosis and is blocked by MDM2 inhibition in colorectal cancer

Abstract

Colorectal cancer (CRC) is the leading cause of cancer associated death worldwide. Ferroptosis is a newly defined form of regulated cell death characterized by the accumulation of lipid hydroperoxides and exerts an increased attention for cancer treatment. However, little is known about ferroptosis in CRC. In this study, through whole genome sequencing and external differential differentiated expression analysis, we identify CUL9 as a novel important modulator for ferroptosis in CRC. Here we demonstrated that CUL9 can binds p53 to ubiquitylate heterogeneous nuclear ribonucleoprotein C for degradation. Overexpression of CUL9 increases resistance to erastin-induced ferroptosis. Then, we discovered this resistance was mediated by CUL9-HNRNPC-MATE1 negative loop, which can provide us with a novel target to overcome drug resistance to ferroptosis activators. Finally, we found that targeting MDM2 was developed as an effective strategy to destroy precious drug-resistant CRC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CUL9 is clinically and functionally important for CRC.
Fig. 2: The biological function of CUL9 is stratified in CRC dependent on the TP53 gene status.
Fig. 3: Survivin is a substrate of the E3 ligase CUL9 in TP53mt CRC and exploration of the substrate of CUL9 in TP53wt CRC.
Fig. 4: CUL9 ubiquitinates HNRNPC by binding to p53 as a complex.
Fig. 5: The CUL9-HNRNPC-MATE1 axis influences erastin-induced ferroptosis in TP53wt CRC.
Fig. 6: Combined induction of Nutlin and Erastin enhances the antitumor effect in TP53wt CRC.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  4. Oliphant R, Nicholson GA, Horgan PG, Molloy RG, McMillan DC, Morrison DS, et al. Contribution of surgical specialization to improved colorectal cancer survival. Br J Surg. 2013;100:1388–95.

    Article  CAS  PubMed  Google Scholar 

  5. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Disco. 2016;15:348–66.

    Article  CAS  Google Scholar 

  6. Aldrovandi M, Conrad M. Ferroptosis: the Good, the Bad and the Ugly. Cell Res. 2020;30:1061–2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Zhang X, Zhang J, Tan J, Li J, Song Z. Development and Validation of a Combined Ferroptosis and Immune Prognostic Classifier for Hepatocellular Carcinoma. Front Cell Dev Biol. 2020;8:596679.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rink JS, Lin AY, McMahon KM, Calvert AE, Yang S, Taxter T, et al. Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis. J Biol Chem. 2020;296:100100.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

  10. Toyokuni S, Yanatori I, Kong Y, Zheng H, Motooka Y, Jiang L. Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci. 2020;111:2665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang X, Du L, Qiao Y, Zhang X, Zheng W, Wu Q, et al. Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol. 2019;24:101211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen Y, Zhu G, Liu Y, Wu Q, Zhang X, Bian Z, et al. O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer. Cell Signal. 2019;63:109384.

    Article  CAS  PubMed  Google Scholar 

  13. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front Pharm. 2017;8:992.

    Article  CAS  Google Scholar 

  15. Nagpal A, Redvers RP, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2(+ve) breast cancer metastasis. Breast Cancer Res. 2019;21:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Maldonado EN, Sheldon KL, DeHart DN, Patnaik J, Manevich Y, Townsend DM, et al. Voltage-dependent anion channels modulate mitochondrial metabolism in cancer cells: regulation by free tubulin and erastin. J Biol Chem. 2013;288:11920–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amor B, Kahan A, Dougados M, Delrieu F. Sulfasalazine and ankylosing spondylitis. Ann Intern Med. 1984;101:878.

    Article  CAS  PubMed  Google Scholar 

  18. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze MT, et al. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol. 2015;2:e1054549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Louandre C, Ezzoukhry Z, Godin C, Barbare JC, Maziere JC, Chauffert B, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int J Cancer. 2013;133:1732–42.

    Article  CAS  PubMed  Google Scholar 

  21. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35:830–49.

    Article  CAS  PubMed  Google Scholar 

  22. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Rep. 2017;20:1692–704.

    Article  CAS  PubMed  Google Scholar 

  23. Lal N, White BS, Goussous G, Pickles O, Mason MJ, Beggs AD, et al. KRAS Mutation and Consensus Molecular Subtypes 2 and 3 Are Independently Associated with Reduced Immune Infiltration and Reactivity in Colorectal Cancer. Clin Cancer Res. 2018;24:224–33.

    Article  CAS  PubMed  Google Scholar 

  24. Loree JM, Bailey AM, Johnson AM, Yu Y, Wu W, Bristow CA, et al. Molecular Landscape of ERBB2/ERBB3 Mutated Colorectal Cancer. J Natl Cancer Inst. 2018;110:1409–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Santos C, Sanz-Pamplona R, Salazar R. RET-fusions: a novel paradigm in colorectal cancer. Ann Oncol. 2018;29:1340–3.

    Article  CAS  PubMed  Google Scholar 

  26. Khan OM, Carvalho J, Spencer-Dene B, Mitter R, Frith D, Snijders AP, et al. The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Investig. 2018;128:1326–37.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol. 2011;12:594–603.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Zhang X, Han C, Wan G, Huang X, Ivan C, et al. TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature. 2015;520:697–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giordano G, Parcesepe P, D’Andrea MR, Coppola L, Di Raimo T, Remo A, et al. JAK/Stat5-mediated subtype-specific lymphocyte antigen 6 complex, locus G6D (LY6G6D) expression drives mismatch repair proficient colorectal cancer. J Exp Clin Cancer Res. 2019;38:28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nikolaev AY, Li M, Puskas N, Qin J, Gu W. Parc: a cytoplasmic anchor for p53. Cell. 2003;112:29–40.

    Article  CAS  PubMed  Google Scholar 

  31. Ghandi M, Huang FW, Jane-Valbuena J, Kryukov GV, Lo CC, McDonald ER 3rd, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature. 2019;569:503–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kunii A, Hara Y, Takenaga M, Hattori N, Fukazawa T, Ushijima T, et al. Three-Component Repurposed Technology for Enhanced Expression: Highly Accumulable Transcriptional Activators via Branched Tag Arrays. CRISPR J. 2018;1:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 2019;116:2672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishizawa J, Zarabi SF, Davis RE, Halgas O, Nii T, Jitkova Y, et al. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell. 2019;35:721–37 e729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Pei XH, Yan J, Yan F, Cappell KM, Whitehurst AW, et al. CUL9 mediates the functions of the 3M complex and ubiquitylates survivin to maintain genome integrity. Mol Cell. 2014;54:805–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hattori K, Ishikawa H, Sakauchi C, Takayanagi S, Naguro I, Ichijo H. Cold stress-induced ferroptosis involves the ASK1-p38 pathway. EMBO Rep. 2017;18:2067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, et al. m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res. 2018;46:D139–D145.

    Article  CAS  PubMed  Google Scholar 

  38. Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat. 2018;50:445–60.

    Article  CAS  PubMed  Google Scholar 

  39. Lopez J, Tait SW. Killing the Killer: PARC/CUL9 promotes cell survival by destroying cytochrome C. Sci Signal. 2014;7:pe17.

    Article  PubMed  CAS  Google Scholar 

  40. Gama V, Swahari V, Schafer J, Kole AJ, Evans A, Huang Y, et al. The E3 ligase PARC mediates the degradation of cytosolic cytochrome c to promote survival in neurons and cancer cells. Sci Signal. 2014;7:ra67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, et al. Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell. 2018;33:890–904 e895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng P, Liang C, Ren L, Zhu D, Feng Q, Chang W, et al. Additional Biomarkers beyond RAS That Impact the Efficacy of Cetuximab plus Chemotherapy in mCRC: A Retrospective Biomarker Analysis. J Oncol. 2018;2018:5072987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008;322:750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 81602040, 81903067, 82072678 and 81402341), Clinical science and technology innovation project of Shanghai (SHDC12016104), Shanghai Science and Technology Committee Project (17411951300, 18140903200 and 19511121300) and Youth fund of Zhongshan Hospital (2019ZSQN28). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in the writing of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Prof XJM and Prof WYX contributed to the design of the work and were the corresponding authors in this paper. Dr LY, TW, ZZ, LQ, ZP, and LYX performed the research, Dr LY, TW, LK, JX, PYZ, JML, FQY, and HGD analyzed and interpreted the patient data. Dr YL was a major contributor in writing the paper. Dr FQY and JML provided the research background and perspective views. Prof XJM and Prof WYX were the corresponding authors and approved the final version of this paper to be published.

Corresponding authors

Correspondence to Wang YueXiang or Xu JianMin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written informed consent was obtained by all the patients. The study protocol followed the ethical guidelines of the Declaration of Helsinki and was approved by the Ethical Committee of Zhongshan Hospital of Fudan University. The ethics approval ID was B2017-166R.

Concent for publication

We have obtained consent to publish from the participant to report individual patient data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., WenTao, T., ZhiYuan, Z. et al. Cullin-9/p53 mediates HNRNPC degradation to inhibit erastin-induced ferroptosis and is blocked by MDM2 inhibition in colorectal cancer. Oncogene 41, 3210–3221 (2022). https://doi.org/10.1038/s41388-022-02284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02284-z

This article is cited by

Search

Quick links