Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic and TCR profiling data reveal the distinct molecular traits in epithelial ovarian cancer histotypes

Abstract

Epithelial ovarian cancer (EOC) is classified into five major histotypes: high-grade serous (HGSOC), low-grade serous (LGSOC), clear cell (CCOC), endometrioid (ENOC), and mucinous (MOC). However, the landscape of molecular and immunological alterations in these histotypes, especially LGSOC, CCOC, ENOC, and MOC, is largely uncharacterized. We collected 101 treatment-naive EOC patients. The resected tumor tissues and paired preoperative peripheral blood samples were collected and subjected to target sequencing of 1021 cancer-associated genes and T cell repertoire sequencing. Distinct characteristics of mutations were identified among the five histotypes. Furthermore, tumor mutation burden (TMB) was found to be higher in CCOC and ENOC, but lower in LGSOC and HGSOC. Alterations associated with DNA damage repair (DDR) pathways and homologous recombination deficiencies (HRD) were prevalent in five histotypes. CCOC demonstrated increased level of T cell clonality compared with HSGOC. Interestingly, the proportion of the 100 most common T cell clones was associated with TMB and tumor neoantigen burden in CCOC, highlighting more sensitive anti-tumor responses in this histotype, which was also evidenced by the enhanced convergent recombination of T cell clones. These findings shed light on the molecular traits of genomic alteration and T cell repertoire in the five major EOC histotypes and may help optimize clinical management of EOC with different histotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The mutation landscape in EOC histotypes.
Fig. 2: Mutational signatures in EOC histotypes.
Fig. 3: The prevalence of alterations in DDR pathways in EOC histotypes.
Fig. 4: The comparisons of TCR metrics between HGSOC and CCOC in tumors.
Fig. 5: The interplay between T cell expanding and somatic mutations.
Fig. 6: The associations between ctDNA detection and clinicopathological features.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68:284–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prat J. Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features. Virchows Arch. 2012;460:237–49.

    Article  PubMed  Google Scholar 

  4. Lan A, Yang G. Clinicopathological parameters and survival of invasive epithelial ovarian cancer by histotype and disease stage. Future Oncol. 2019;15:2029–39.

    Article  CAS  PubMed  Google Scholar 

  5. Griffiths CT, Fuller AF. Intensive surgical and chemotherapeutic management of advanced ovarian cancer. Surg Clin North Am. 1978;58:131–42.

    Article  CAS  PubMed  Google Scholar 

  6. Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69:280–304.

    PubMed  Google Scholar 

  7. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet. 2019;393:1240–53.

    Article  PubMed  Google Scholar 

  8. Hoffmann K, Berger H, Kulbe H, Thillainadarasan S, Mollenkopf HJ, Zemojtel T, et al. Stable expansion of high-grade serous ovarian cancer organoids requires a low-Wnt environment. EMBO J. 2020;39:e104013.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, et al. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018;50:1262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, et al. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian. Cancer Cell. 2018;173:1755–69 e1722.

    CAS  Google Scholar 

  11. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han J, Duan J, Bai H, Wang Y, Wan R, Wang X, et al. TCR Repertoire Diversity of Peripheral PD-1(+)CD8(+) T Cells Predicts Clinical Outcomes after Immunotherapy in Patients with Non-Small Cell Lung Cancer. Cancer. Immunol Res. 2020;8:146–54.

    CAS  Google Scholar 

  13. Hogan SA, Courtier A, Cheng PF, Jaberg-Bentele NF, Goldinger SM, Manuel M, et al. Peripheral Blood TCR Repertoire Profiling May Facilitate Patient Stratification for Immunotherapy against Melanoma. Cancer Immunol Res. 2019;7:77–85.

    Article  CAS  PubMed  Google Scholar 

  14. Reuben A, Zhang J, Chiou SH, Gittelman RM, Li J, Lee WC, et al. Comprehensive T cell repertoire characterization of non-small cell lung cancer. Nat Commun. 2020;11:603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang L, Cham J, Paciorek A, Trager J, Sheikh N, Fong L. 3D: diversity, dynamics, differential testing - a proposed pipeline for analysis of next-generation sequencing T cell repertoire data. BMC Bioinforma. 2017;18:129.

    Article  CAS  Google Scholar 

  16. Reuben A, Gittelman R, Gao J, Zhang J, Yusko EC, Wu CJ, et al. TCR Repertoire Intratumor Heterogeneity in Localized Lung Adenocarcinomas: An Association with Predicted Neoantigen Heterogeneity and Postsurgical Recurrence. Cancer Disco. 2017;7:1088–97.

    Article  CAS  Google Scholar 

  17. Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547:94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature. 2017;547:89–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joshi K, de Massy MR, Ismail M, Reading JL, Uddin I, Woolston A, et al. Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat Med. 2019;25:1549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  CAS  Google Scholar 

  21. Hollis RL, Thomson JP, Stanley B, Churchman M, Meynert AM, Rye T, et al. Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat Commun. 2020;11:4995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheasley D, Nigam A, Zethoven M, Hunter S, Etemadmoghadam D, Semple T, et al. Genomic analysis of low-grade serous ovarian carcinoma to identify key drivers and therapeutic vulnerabilities. J Pathol. 2021;253:41–54.

    Article  CAS  PubMed  Google Scholar 

  23. Gorringe KL, Cheasley D, Wakefield MJ, Ryland GL, Allan PE, Alsop K, et al. Therapeutic options for mucinous ovarian carcinoma. Gynecol Oncol. 2020;156:552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chui MH, Doodnauth SA, Erdmann N, Tiedemann RE, Sircoulomb F, Drapkin R, et al. Chromosomal Instability and mTORC1 Activation through PTEN Loss Contribute to Proteotoxic Stress in Ovarian Carcinoma. Cancer Res. 2019;79:5536–49.

    Article  PubMed  Google Scholar 

  25. Wang Z, Zhao J, Wang G, Zhang F, Zhang Z, Zhang F, et al. Comutations in DNA Damage Response Pathways Serve as Potential Biomarkers for Immune Checkpoint Blockade. Cancer Res. 2018;78:6486–96.

    Article  CAS  PubMed  Google Scholar 

  26. Davila JI, Chanana P, Sarangi V, Fogarty ZC, Weroha SJ, Guo R, et al. Frequent POLE-driven hypermutation in ovarian endometrioid cancer revealed by mutational signatures in RNA sequencing. BMC Med Genom. 2021;14:165.

    Article  CAS  Google Scholar 

  27. Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol. 2015;89:899–921.

    Article  CAS  PubMed  Google Scholar 

  28. O’Donnell T, Christie EL, Ahuja A, Buros J, Aksoy BA, Bowtell DDL, et al. Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer. BMC Cancer. 2018;18:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Oliveira D, Schnack TH, Poulsen TS, Christiansen AP, Hogdall CK, Hogdall EV. Genomic Sub-Classification of Ovarian Clear Cell Carcinoma Revealed by Distinct Mutational Signatures. Cancers (Basel) 2021;13:5242.

  30. Gulhan DC, Lee JJ, Melloni GEM, Cortes-Ciriano I, Park PJ. Detecting the mutational signature of homologous recombination deficiency in clinical samples. Nat Genet. 2019;51:912–9.

    Article  CAS  PubMed  Google Scholar 

  31. Radovich M, Jiang G, Hancock BA, Chitambar C, Nanda R, Falkson C, et al. Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial. JAMA Oncol. 2020;6:1410–5.

    Article  PubMed  Google Scholar 

  32. Brown JS, O’Carrigan B, Jackson SP, Yap TA. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Disco. 2017;7:20–37.

    Article  CAS  Google Scholar 

  33. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  34. Pujade-Lauraine E. New treatments in ovarian cancer. Ann Oncol. 2017;28:viii57–viii60.

    Article  CAS  PubMed  Google Scholar 

  35. Previs RA, Sood AK, Mills GB, Westin SN. The rise of genomic profiling in ovarian cancer. Expert Rev Mol Diagn. 2016;16:1337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elsherif SB, Bhosale PR, Lall C, Menias CO, Itani M, Butler KA, et al. Current update on malignant epithelial ovarian tumors. Abdom Radio (NY). 2021;46:2264–80.

    Article  Google Scholar 

  37. Mendivil AA, Tung PK, Bohart R, Bechtol K, Goldstein BH. Dramatic clinical response following dabrafenib and trametinib therapy in a heavily pretreated low grade serous ovarian carcinoma patient with a BRAF V600E mutation. Gynecol Oncol Rep. 2018;26:41–4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Takekuma M, Wong KK, Coleman RL. A long-term surviving patient with recurrent low-grade serous ovarian carcinoma treated with the MEK1/2 inhibitor, selumetinib. Gynecol Oncol Res Pr. 2016;3:5.

    Article  Google Scholar 

  39. Tholander B, Koliadi A, Botling J, Dahlstrand H, Von Heideman A, Ahlstrom H, et al. Complete response with combined BRAF and MEK inhibition in BRAF mutated advanced low-grade serous ovarian carcinoma. Ups J Med Sci. 2020;125:325–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Han C, Bellone S, Zammataro L, Schwartz PE, Santin AD. Binimetinib (MEK162) in recurrent low-grade serous ovarian cancer resistant to chemotherapy and hormonal treatment. Gynecol Oncol Rep. 2018;25:41–4.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hess V, A’Hern R, Nasiri N, King DM, Blake PR, Barton DP, et al. Mucinous epithelial ovarian cancer: a separate entity requiring specific treatment. J Clin Oncol. 2004;22:1040–4.

    Article  CAS  PubMed  Google Scholar 

  42. Pisano C, Greggi S, Tambaro R, Losito S, Iodice F, Di Maio M, et al. Activity of chemotherapy in mucinous epithelial ovarian cancer: a retrospective study. Anticancer Res. 2005;25:3501–5.

    CAS  PubMed  Google Scholar 

  43. Xu W, Rush J, Rickett K, Coward JI. Mucinous ovarian cancer: a therapeutic review. Crit Rev Oncol Hematol. 2016;102:26–36.

    Article  PubMed  Google Scholar 

  44. Moioli M, Barra F, Maramai M, Valenzano Menada M, Vellone VG, Costantini S, et al. Mucinous ovarian cancer: current therapeutic targets, preclinical progress, and experimental drugs. Expert Opin Investig Drugs. 2019;28:1025–9.

    Article  CAS  PubMed  Google Scholar 

  45. Sato N, Saga Y, Mizukami H, Wang D, Fujiwara H, Takei Y, et al. Cetuximab inhibits the growth of mucinous ovarian carcinoma tumor cells lacking KRAS gene mutations. Oncol Rep. 2012;27:1336–40.

    CAS  PubMed  Google Scholar 

  46. Assasi N, Blackhouse G, Campbell K, Gaebel,K, Hopkins R, Jegathisawaran J, et al. DNA Mismatch Repair Deficiency Tumour Testing for Patients With Colorectal Cancer. No.5.3b. Ottawa (ON), CADTH, 2016.

  47. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Banerjee S, Moore KN, Colombo N, Scambia G, Kim BG, Oaknin A et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22:1721–31.

  49. Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009;174:1597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mabuchi S, Sugiyama T, Kimura T. Clear cell carcinoma of the ovary: molecular insights and future therapeutic perspectives. J Gynecol Oncol. 2016;27:e31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551:512–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9:5361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature. 2018;557:575–9.

    Article  CAS  PubMed  Google Scholar 

  55. Dejima H, Hu X, Chen R, Zhang J, Fujimoto J, Parra ER, et al. Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features. Nat Commun. 2021;12:2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robert C, Ribas A, Schachter J, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019;20:1239–51.

    Article  CAS  PubMed  Google Scholar 

  57. Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer. J Clin Oncol. 2015;33:4015–22.

    Article  CAS  PubMed  Google Scholar 

  58. Matulonis UA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, et al. Antitumor activity and safety of pembrolizumab in patients with advanced recurrent ovarian cancer: results from the phase II KEYNOTE-100 study. Ann Oncol. 2019;30:1080–7.

    Article  CAS  PubMed  Google Scholar 

  59. Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, et al. Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial. JAMA Oncol. 2019;5:393–401.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zamarin D, Burger RA, Sill MW, Powell DJ Jr, Lankes HA, Feldman MD, et al. Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study. J Clin Oncol. 2020;38:1814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tarazona N, Gimeno-Valiente F, Gambardella V, Zuniga S, Rentero-Garrido P, Huerta M, et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol. 2019;30:1804–12.

    Article  CAS  PubMed  Google Scholar 

  62. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC - challenges to implementing ctDNA-based screening and MRD detection. Nat Rev Clin Oncol. 2018;15:577–86.

    Article  CAS  PubMed  Google Scholar 

  63. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017;545:446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28:1307–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.

    Article  CAS  PubMed  Google Scholar 

  69. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Niu B, Ye K, Zhang Q, Lu C, Xie M, McLellan MD, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014;30:1015–6.

    Article  CAS  PubMed  Google Scholar 

  72. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380–1.

    Article  CAS  PubMed  Google Scholar 

  73. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O, et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood. 2009;114:4099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sun Y, Best K, Cinelli M, Heather JM, Reich-Zeliger S, Shifrut E, et al. Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization. Front Immunol. 2017;8:430.

    PubMed  PubMed Central  Google Scholar 

  75. Alexandros Karatzoglou AS, Hornik K, Zeileis A. kernlab – An S4 Package for Kernel Methods in R. J Stat Softw 2004;011:i09.

  76. Csárdi Gábor NT. The Igraph Software Package for Complex Network Research. InterJournal Complex Syst. 2005;2006:1695.

    Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81772783 and 81971475) and the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (Nos. CAMS-2017-I2M-1–002).

Author information

Authors and Affiliations

Authors

Contributions

YX, LY, XX conceived and designed the study. DC, JW, TR, JY, MY, YY, PL, RY, YW, RA, GL, JY collected samples as well as clinical information. SZ, CZ performed the experiments. SZ, CZ, JB, XX, YG, Yanf-G analyzed the data. SZ, CZ, XX, YX, LY wrote the paper. SZ, CZ, XX, Yanf-G, Xuef-X, YX provided intellectual discussions and ideas regarding the content of paper. YX, LY supervised the study. All authors read and approved the final paper.

Corresponding authors

Correspondence to Ling Yang or Yang Xiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was reviewed and approved by the institutional ethics committee of Peking Union Medical College Hospital (No. HS-1437). The participants provided their written informed consent in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhang, C., Cao, D. et al. Genomic and TCR profiling data reveal the distinct molecular traits in epithelial ovarian cancer histotypes. Oncogene 41, 3093–3103 (2022). https://doi.org/10.1038/s41388-022-02277-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02277-y

This article is cited by

Search

Quick links