Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

eIF3a regulation of mTOR signaling and translational control via HuR in cellular response to DNA damage

Abstract

eIF3a (eukaryotic translation initiation factor 3a), a subunit of the eIF3 complex, has been suggested to play a regulatory role in protein synthesis and in cellular response to DNA-damaging treatments. S6K1 is an effector and a mediator of mTOR complex 1 (mTORC1) in regulating protein synthesis and integrating diverse signals into control of cell growth and response to stress. Here, we show that eIF3a regulates S6K1 activity by inhibiting mTORC1 kinase via regulating Raptor synthesis. The regulation of Raptor synthesis is via eIF3a interaction with HuR (human antigen R) and binding of the eIF3a-HuR complex to the 5สน-UTR of Raptor mRNA. Furthermore, mTORC1 may mediate eIF3a function in cellular response to cisplatin by regulating synthesis of NER proteins and NER activity. Taken together, we conclude that the mTOR signaling pathway may also be regulated by translational control and mediate eIF3a regulation of cancer cell response to cisplatin by regulating NER protein synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: eIF3a knockdown increases mTORC1 activity.
Fig. 2: eIF3a regulates expression of other mTORC1 subunits.
Fig. 3: Raptor mediates eIF3a regulation of mTORC1 activity.
Fig. 4: eIF3a regulates the 5สน-UTR activity of Raptor mRNA.
Fig. 5: HuR binds to the 5สน-UTR sequence of Raptor mRNA.
Fig. 6: eIF3a regulates Akt-mediated PRAS40 phosphorylation.
Fig. 7: mTORC1 mediates eIF3a regulation of cellular response to cisplatin.
Fig. 8: mTORC1 mediates eIF3a regulation of NER gene expression.

Similar content being viewed by others

References

  1. Clemens MJ, Bommer UA. Translational control: the cancer connection. Int J Biochem Cell Biol. 1999;31:1โ€“23.

    Articleย  CASย  PubMedย  Google Scholarย 

  2. Dong Z, Zhang JT. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol. 2006;59:169โ€“80.

    Articleย  PubMedย  Google Scholarย 

  3. Yin JY, Dong Z, Liu ZQ, Zhang JT. Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep. 2011;31:1โ€“15.

    Articleย  CASย  PubMedย  Google Scholarย 

  4. Yin JY, Zhang JT, Zhang W, Zhou HH, Liu ZQ. eIF3a: A new anticancer drug target in the eIF family. Cancer Lett. 2018;412:81โ€“87.

    Articleย  CASย  PubMedย  Google Scholarย 

  5. Yin JY, Shen J, Dong ZZ, Huang Q, Zhong MZ, Feng DY, et al. Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin Cancer Res. 2011;17:4600โ€“9.

    Articleย  CASย  PubMedย  Google Scholarย 

  6. Liu RY, Dong Z, Liu J, Yin JY, Zhou L, Wu X, et al. Role of eIF3a in regulating cisplatin sensitivity and in translational control of nucleotide excision repair of nasopharyngeal carcinoma. Oncogene. 2011;30:4814โ€“23.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  7. Chen J, Liu JY, Dong ZZ, Zou T, Wang Z, Shen Y, et al. The effect of eIF3a on anthracycline-based chemotherapy resistance by regulating DSB DNA repair. Biochem Pharm. 2021;190:114616.

    Articleย  CASย  PubMedย  Google Scholarย 

  8. Tumia R, Wang CJ, Dong T, Ma S, Beebe J, Chen J, et al. eIF3a Regulation of NHEJ Repair Protein Synthesis and Cellular Response to Ionizing Radiation. Front cell developmental Biol. 2020;8:753.

    Articleย  Google Scholarย 

  9. Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal. 2009;21:827โ€“35.

    Articleย  CASย  PubMedย  Google Scholarย 

  10. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177โ€“89.

    Articleย  CASย  PubMedย  Google Scholarย 

  11. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11:895โ€“904.

    Articleย  CASย  PubMedย  Google Scholarย 

  12. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10:457โ€“68.

    Articleย  CASย  PubMedย  Google Scholarย 

  13. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137:873โ€“86.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  14. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25:903โ€“15.

    Articleย  CASย  PubMedย  Google Scholarย 

  15. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23:3151โ€“71.

    Articleย  CASย  PubMedย  Google Scholarย 

  16. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471โ€“84.

    Articleย  CASย  PubMedย  Google Scholarย 

  17. Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA. 2005;102:8204โ€“9.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  18. Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, Oโ€™Reilly T, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120:747โ€“59.

    Articleย  CASย  PubMedย  Google Scholarย 

  19. Babichev Y, Kabaroff L, Datti A, Uehling D, Isaac M, Al-Awar R, et al. PI3K/AKT/mTOR inhibition in combination with doxorubicin is an effective therapy for leiomyosarcoma. J Transl Med. 2016;14:67.

    Articleย  PubMedย  PubMed Centralย  CASย  Google Scholarย 

  20. Grunwald V, DeGraffenried L, Russel D, Friedrichs WE, Ray RB, Hidalgo M. Inhibitors of mTOR reverse doxorubicin resistance conferred by PTEN status in prostate cancer cells. Cancer Res. 2002;62:6141โ€“5.

    CASย  PubMedย  Google Scholarย 

  21. Wei F, Liu Y, Guo Y, Xiang A, Wang G, Xue X, et al. miR-99b-targeted mTOR induction contributes to irradiation resistance in pancreatic cancer. Mol Cancer. 2013;12:81.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  22. Nassim R, Mansure JJ, Chevalier S, Cury F, Kassouf W. Combining mTOR inhibition with radiation improves antitumor activity in bladder cancer cells in vitro and in vivo: a novel strategy for treatment. PLoS One. 2013;8:e65257.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  23. Yuan HX, Guan KL. Structural insights of mTOR complex 1. Cell Res. 2016;26:267โ€“8.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  24. Espeillac C, Mitchell C, Celton-Morizur S, Chauvin C, Koka V, Gillet C, et al. S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. J Clin Invest. 2011;121:2821โ€“32.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  25. Su B, Jacinto E. Mammalian TOR signaling to the AGC kinases. Crit Rev Biochem Mol Biol. 2011;46:527โ€“47.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  26. Magnuson B, Ekim B, Fingar DC. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J. 2012;441:1โ€“21.

    Articleย  CASย  PubMedย  Google Scholarย 

  27. Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P, et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol: CB. 2008;18:1269โ€“77.

    Articleย  CASย  PubMedย  Google Scholarย 

  28. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol cell. 2008;30:214โ€“26.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  29. Gwinn DM, Asara JM, Shaw RJ. Raptor is phosphorylated by cdc2 during mitosis. PloS one. 2010;5:e9197.

    Articleย  PubMedย  PubMed Centralย  CASย  Google Scholarย 

  30. Ramirez-Valle F, Badura ML, Braunstein S, Narasimhan M, Schneider RJ. Mitotic raptor promotes mTORC1 activity, G(2)/M cell cycle progression, and internal ribosome entry site-mediated mRNA translation. Mol Cell Biol. 2010;30:3151โ€“64.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  31. Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, Thibault P, et al. ERK1/2 phosphorylate Raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). The. J Biol Chem. 2011;286:567โ€“77.

    Articleย  CASย  PubMedย  Google Scholarย 

  32. Kwak D, Choi S, Jeong H, Jang JH, Lee Y, Jeon H, et al. Osmotic stress regulates mammalian target of rapamycin (mTOR) complex 1 via c-Jun N-terminal Kinase (JNK)-mediated Raptor protein phosphorylation. J Biol Chem. 2012;287:18398โ€“407.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  33. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110:163โ€“75.

    Articleย  CASย  PubMedย  Google Scholarย 

  34. Foster KG, Acosta-Jaquez HA, Romeo Y, Ekim B, Soliman GA, Carriere A, et al. Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation. J Biol Chem. 2010;285:80โ€“94.

    Articleย  CASย  PubMedย  Google Scholarย 

  35. Dong Z, Liu J, Zhang JT. Translational regulation of Chk1 expression by eIF3a via interaction with the RNA-binding protein HuR. Biochem J. 2020;477:1939โ€“50.

    Articleย  PubMedย  Google Scholarย 

  36. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21โ€“35.

    Articleย  CASย  PubMedย  Google Scholarย 

  37. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem. 2003;278:10189โ€“94.

    Articleย  CASย  PubMedย  Google Scholarย 

  38. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9:316โ€“23.

    Articleย  CASย  Google Scholarย 

  39. Peng DJ, Wang J, Zhou JY, Wu GS. Role of the Akt/mTOR survival pathway in cisplatin resistance in ovarian cancer cells. Biochem Biophys Res Commun. 2010;394:600โ€“5.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  40. Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, Godwin AK, et al. AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene. 2004;23:5853โ€“7.

    Articleย  CASย  PubMedย  Google Scholarย 

  41. Qiao Y, Spitz MR, Guo Z, Hadeyati M, Grossman L, Kraemer KH, et al. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes. Mutat Res. 2002;509:165โ€“74.

    Articleย  CASย  PubMedย  Google Scholarย 

  42. Ahn B, Kang D, Kim H, Wei Q. Repair of mitomycin C cross-linked DNA in mammalian cells measured by a host cell reactivation assay. Mol Cells. 2004;18:249โ€“55.

    CASย  PubMedย  Google Scholarย 

  43. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098โ€“101.

    Articleย  CASย  PubMedย  Google Scholarย 

  44. Kocalis HE, Hagan SL, George L, Turney MK, Siuta MA, Laryea GN, et al. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis. Mol Metab. 2014;3:394โ€“407.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  45. Stronach EA, Chen M, Maginn EN, Agarwal R, Mills GB, Wasan H, et al. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia. 2011;13:1069โ€“80.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  46. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30:203โ€“13.

    Articleย  CASย  PubMedย  Google Scholarย 

  47. Wagner S, Herrmannova A, Malik R, Peclinovska L, Valasek LS. Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol Cell Biol. 2014;34:3041โ€“52.

    Articleย  PubMedย  PubMed Centralย  CASย  Google Scholarย 

  48. Dong Z, Qi J, Peng H, Liu J, Zhang JT. Spectrin Domain of Eukaryotic Initiation Factor 3a Is the Docking Site for Formation of the a:b:i:g Subcomplex. J Biol Chem. 2013;288:27951โ€“9.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  49. Chaudhuri J, Chakrabarti A, Maitra U. Biochemical characterization of mammalian translation initiation factor 3 (eIF3). Molecular cloning reveals that p110 subunit is the mammalian homologue of Saccharomyces cerevisiae protein Prt1. J Biol Chem. 1997;272:30975โ€“83.

    Articleย  CASย  PubMedย  Google Scholarย 

  50. Dong Z, Zhang JT. EIF3 p170, a Mediator of Mimosine Effect on Protein Synthesis and Cell Cycle Progression. Mol Biol Cell. 2003;14:3942โ€“51.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  51. Wagner S, Herrmannova A, Sikrova D, Valasek LS. Human eIF3b and eIF3a serve as the nucleation core for the assembly of eIF3 into two interconnected modules: the yeast-like core and the octamer. Nucleic Acids Res. 2016;44:10772โ€“88.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  52. Dong Z, Liu LH, Han B, Pincheira R, Zhang JT. Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth. Oncogene. 2004;23:3790โ€“801.

    Articleย  CASย  PubMedย  Google Scholarย 

  53. Nouspikel T. DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009;66:994โ€“1009.

    Articleย  CASย  PubMedย  Google Scholarย 

  54. Neher TM, Rechkunova NI, Lavrik OI, Turchi JJ. Photo-cross-linking of XPC-Rad23B to cisplatin-damaged DNA reveals contacts with both strands of the DNA duplex and spans the DNA adduct. Biochemistry. 2010;49:669โ€“78.

    Articleย  CASย  PubMedย  Google Scholarย 

  55. Neher TM, Shuck SC, Liu JY, Zhang JT, Turchi JJ. Identification of novel small molecule inhibitors of the XPA protein using in silico based screening. ACS Chem Biol. 2010;5:953โ€“65.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  56. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168:960โ€“76.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  57. Dong Z, Liu Y, Zhang JT. Regulation of ribonucleotide reductase M2 expression by the upstream AUGs. Nucleic Acids Res. 2005;33:2715โ€“25.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  58. Yin JY, Dong ZZ, Liu RY, Chen J, Liu ZQ, Zhang JT. Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a. Carcinogenesis. 2013;34:1224โ€“31.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  59. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248โ€“54.

    Articleย  CASย  PubMedย  Google Scholarย 

  60. Qi J, Dong Z, Liu J, Zhang JT. EIF3i promotes colon oncogenesis by regulating COX-2 protein synthesis and beta-catenin activation. Oncogene. 2014;33:4156โ€“63.

    Articleย  CASย  PubMedย  Google Scholarย 

  61. Vandamme T, Beyens M, de Beeck KO, Dogan F, van Koetsveld PM, Pauwels P, et al. Long-term acquired everolimus resistance in pancreatic neuroendocrine tumours can be overcome with novel PI3K-AKT-mTOR inhibitors. Br J Cancer. 2016;114:650โ€“8.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  62. Peery R, Kyei-Baffour K, Dong Z, Liu J, de Andrade Horn P, Dai M, et al. Synthesis and identification of a novel lead targeting survivin dimerization for proteasome-dependent degradation. J Med Chem. 2020;63:7243โ€“51.

    Articleย  CASย  PubMedย  PubMed Centralย  Google Scholarย 

  63. Huang W, Dong Z, Chen Y, Wang F, Wang CJ, Peng H, et al. Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene. 2016;35:783โ€“92.

    Articleย  CASย  PubMedย  Google Scholarย 

Download references

Acknowledgements

This work was supported in part by the NIH grant R01 CA211904.

Author information

Authors and Affiliations

Authors

Contributions

SM, ZD and JTZ: designed research; SM: performed research; SM, YH and JL: analyzed data; SM and JTZ: wrote the paper.

Corresponding author

Correspondence to Jian-Ting Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherโ€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Dong, Z., Huang, Y. et al. eIF3a regulation of mTOR signaling and translational control via HuR in cellular response to DNA damage. Oncogene 41, 2431โ€“2443 (2022). https://doi.org/10.1038/s41388-022-02262-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02262-5

This article is cited by

Search

Quick links