Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/β-catenin signaling

A Correction to this article was published on 14 June 2022

This article has been updated

Abstract

Breast cancer stem cells (BCSCs) are the main drivers of recurrence and metastasis. However, commonly used drugs rarely target BCSCs. Via screenings, we found that Salt-inducible kinase 2 (SIK2) participated in breast cancer (BC) stemness maintenance and zebrafish embryos development. SIK2 was upregulated in recurrence samples. Knockdown of SIK2 expression reduced the proportion of BCSCs and the tumor initiation of BC cells. Mechanistically, SIK2, phosphorylated by CK1α, directly phosphorylated LRP6 in a SIK2 kinase activity-dependent manner, leading to Wnt/β-catenin signaling pathway activation. ARN-3236 and HG-9-91-01, inhibitors of SIK2, inhibited LRP6 phosphorylation and β-catenin accumulation and disturbed stemness maintenance. In addition, the SIK2-activated Wnt/β-catenin signaling led to induction of IDH1 expression, causing metabolic reprogramming in BC cells. These findings demonstrate a novel mechanism whereby Wnt/β-catenin signaling pathway is regulated by different kinases in response to metabolic requirement of CSCs, and suggest that SIK2 inhibition may potentially be a strategy for eliminating BCSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SIK2 expression is positively correlated with breast cancer recurrence.
Fig. 2: SIK2 is critical for the stemness of BCSCs.
Fig. 3: Interference with SIK2 inhibits the tumor initiation of breast cancer cells in vivo.
Fig. 4: SIK2 activates the Wnt/β-catenin signaling pathway, participating in the development of zebrafish embryos.
Fig. 5: SIK2 binds to CK1α to activate the Wnt/β-catenin pathway, and this process depends on the kinase activity of SIK2.
Fig. 6: T169 of CK1α is critical for the phosphorylation of SIK2.
Fig. 7: SIK2 directly phosphorylates the Wnt receptor LRP6 to activate the Wnt/β-catenin pathway.
Fig. 8: SIK2 promotes IDH1 expression through the Wnt/β-catenin pathway in breast cancer cells.

Similar content being viewed by others

Data availability

RNA-Seq data released: Gene Expression Omnibus GSE169344.

Change history

References

  1. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021;27:212–24.

    Article  CAS  PubMed  Google Scholar 

  2. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.

    Article  CAS  PubMed  Google Scholar 

  3. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28.

    Article  CAS  PubMed  Google Scholar 

  4. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  5. Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol. 2018;53:59–74.

    Article  PubMed  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiraga T, Ito S, Nakamura H. EpCAM expression in breast cancer cells is associated with enhanced bone metastasis formation. Int J Cancer. 2016;138:1698–708.

    Article  CAS  PubMed  Google Scholar 

  8. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopez Almeida L, Sebbagh M, Bertucci F, Finetti P, Wicinski J, Marchetto S, et al. The SCRIB paralog LANO/LRRC1 regulates breast cancer stem cell fate through WNT/beta-catenin signaling. Stem Cell Rep. 2018;11:1040–50.

    Article  CAS  Google Scholar 

  10. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  11. Acebron SP, Niehrs C. beta-catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol. 2016;26:956–67.

    Article  CAS  PubMed  Google Scholar 

  12. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  PubMed  Google Scholar 

  13. Angeloni V, Tiberio P, Appierto V, Daidone MG. Implications of stemness-related signaling pathways in breast cancer response to therapy. Semin Cancer Biol. 2015;31:43–51.

    Article  CAS  PubMed  Google Scholar 

  14. Miller-Kleinhenz J, Guo X, Qian W, Zhou H, Bozeman EN, Zhu L, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62.

    Article  CAS  PubMed  Google Scholar 

  15. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ou D, Chen L, He J, Rong Z, Gao J, Li Z, et al. CDK11 negatively regulates Wnt/beta-catenin signaling in the endosomal compartment by affecting microtubule stability. Cancer Biol Med. 2020;17:328–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30:214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, et al. CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of beta-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 2019;18:1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, et al. The single-cell pathology landscape of breast cancer. Nature. 2020;578:615–20.

    Article  CAS  PubMed  Google Scholar 

  20. Sakamoto K, Bultot L, Goransson O. The salt-inducible kinases: emerging metabolic regulators. Trends Endocrinol Metab. 2018;29:827–40.

    Article  CAS  PubMed  Google Scholar 

  21. Miranda F, Mannion D, Liu S, Zheng Y, Mangala LS, Redondo C, et al. Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer cell. 2016;30:273–89.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou J, Alfraidi A, Zhang S, Santiago-O’Farrill JM, Yerramreddy Reddy VK, Alsaadi A, et al. A novel compound ARN-3236 inhibits salt-inducible kinase 2 and sensitizes ovarian cancer cell lines and xenografts to paclitaxel. Clin Cancer Res. 2017;23:1945–54.

    Article  CAS  PubMed  Google Scholar 

  23. Raisch J, Cote-Biron A, Rivard N. A role for the WNT co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers (Basel). 2019;11:1162.

    Article  CAS  Google Scholar 

  24. Liu CC, Prior J, Piwnica-Worms D, Bu G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci USA. 2010;107:5136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim SE, Huang H, Zhao M, Zhang X, Zhang A, Semonov MV, et al. Wnt stabilization of beta-catenin reveals principles for morphogen receptor-scaffold assemblies. Science. 2013;340:867–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang ZN, Gong L, Lv S, Li J, Tai X, Cao W, et al. SIK2 regulates fasting-induced PPARalpha activity and ketogenesis through p300. Sci Rep. 2016;6:1–8.

    Google Scholar 

  28. Cheng R, Ding L, He X, Takahashi Y, Ma JX. Interaction of PPARalpha with the canonic wnt pathway in the regulation of renal fibrosis. Diabetes. 2016;65:3730–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. El-Sahli S, Xie Y, Wang L, Liu S. Wnt signaling in cancer metabolism and immunity. Cancers (Basel). 2019;11:904.

    Article  CAS  Google Scholar 

  30. Waitkus MS, Diplas BH, Yan H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 2018;34:186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maxfield KE, Macion J, Vankayalapati H, Whitehurst AW. SIK2 restricts autophagic flux to support triple-negative breast cancer survival. Mol Cell Biol. 2016;36:3048–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu B, Yao P, Xiao F, Guo J, Wu L, Yang Y. MYBL2-induced PITPNA-AS1 upregulates SIK2 to exert oncogenic function in triple-negative breast cancer through miR-520d-5p and DDX54. J Transl Med. 2021;19:1–17.

    Article  Google Scholar 

  33. Zohrap N, Saatci O, Ozes B, Coban I, Atay HM, Battaloglu E, et al. SIK2 attenuates proliferation and survival of breast cancer cells with simultaneous perturbation of MAPK and PI3K/Akt pathways. Oncotarget. 2018;9:21876–92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ren X, Rong Z, Liu X, Gao J, Xu X, Zi Y, et al. The protein kinase activity of NME7 activates Wnt/beta-catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma. Cancer Res. 2022;82:60–74.

    Article  CAS  PubMed  Google Scholar 

  35. Xie J, Wen M, Zhang J, Wang Z, Wang M, Qiu Y, et al. The roles of RNA helicases in DNA damage repair and tumorigenesis reveal precision therapeutic strategies. Cancer Res. 2022;82:872–84.

    Article  CAS  PubMed  Google Scholar 

  36. Cai S, Chen Y, Shang Y, Cui J, Li Z, Li Y. Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment. Cell Death Dis. 2018;9:1–11.

    Article  Google Scholar 

  37. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lanczky A, Gyorffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23:e27633.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Article  Google Scholar 

  40. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1–pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, et al. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell. 2020;183:1436–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jalalirad M, Haddad TC, Salisbury JL, Radisky D, Zhang M, Schroeder M, et al. Aurora-A kinase oncogenic signaling mediates TGF-beta-induced triple-negative breast cancer plasticity and chemoresistance. Oncogene. 2021;40:2509–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu W, Rui H, Wang J, Lin S, He Y, Chen M, et al. Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J. 2006;25:1646–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported partly by National Natural Science Foundation of China (81874200, 82030087, 82103675, 82172980, and 82060308), Fund 2018RS3028, and 2021JJ0039 from Hunan Provincial Science and Technology Department and Guizhou Science and Technology Immunology and infection Platform (2018-5706 and 2017-5724).

Author information

Authors and Affiliations

Authors

Contributions

LS, YD, and ZR designed the experiments and wrote the paper. ZR, LZ, ZL, YL, and RX performed the xenograft tumor and Zebrafish experiments. ZR, ZX, YD, and YZ processed clinical specimens. DO, JH, ZR, and XR performed the kinase screening. ZR, JG, and YM performed the ChIP experiments. ZR, YZ, and YG performed IHC and pathological analysis. ZR, ZZ, ZC, and QF.

Corresponding authors

Correspondence to Yuezhen Deng or Lunquan Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Z., Zhang, L., Li, Z. et al. SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/β-catenin signaling. Oncogene 41, 2390–2403 (2022). https://doi.org/10.1038/s41388-022-02259-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02259-0

This article is cited by

Search

Quick links