Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alcohol-driven metabolic reprogramming promotes development of RORγt-deficient thymic lymphoma

Abstract

RORγt is a master regulator of Th17 cells. Despite evidence linking RORγt deficiency/inhibition with metastatic thymic T cell lymphomas, the role of RORγt in lymphoma metabolism is unknown. Chronic alcohol consumption plays a causal role in many human cancers. The risk of T cell lymphoma remains unclear in humans with alcohol use disorders (AUD) after chronic RORγt inhibition. Here we demonstrated that alcohol consumption accelerates RORγt deficiency-induced lymphomagenesis. Loss of RORγt signaling in the thymus promotes aerobic glycolysis and glutaminolysis and increases allocation of glutamine carbon into lipids. Importantly, alcohol consumption results in a shift from aerobic glycolysis to glutaminolysis. Both RORγt deficiency- and alcohol-induced metabolic alterations are mediated by c-Myc, as silencing of c-Myc decreases the effects of alcohol consumption and RORγt deficiency on glutaminolysis, biosynthesis, and tumor growth in vivo. The ethanol-mediated c-Myc activation coupled with increased glutaminolysis underscore the critical role of RORγt-Myc signaling and translation in lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of alcohol consumption on the development of RORγt deficiency-driven thymic lymphoma.
Fig. 2: Transcriptomic profiling identifies metabolic reprogramming as a hallmark of RORγt deficiency and alcohol consumption.
Fig. 3: RORγt regulates mitochondrial and metabolic phenotypes of thymocytes.
Fig. 4: RORγt and alcohol consumption regulate aerobic glycolysis in thymocytes.
Fig. 5: RORγt deficiency cooperates with alcohol consumption to promote glutaminolysis.
Fig. 6: Inhibition of RORγt promotes glutamine-dependent biosynthesis in lymphoma under glucose insufficient condition.
Fig. 7: c-Myc mediates the effects of RORγt loss on glutaminolysis and biosynthesis.
Fig. 8: c-Myc mediates the metabolic and tumorigenic effects induced by RORγt loss with alcohol consumption.

Similar content being viewed by others

References

  1. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  2. He YW, Beers C, Deftos ML, Ojala EW, Forbush KA, Bevan MJ. Down-regulation of the orphan nuclear receptor ROR gamma t is essential for T lymphocyte maturation. J Immunol. 2000;164:5668–74.

    Article  CAS  PubMed  Google Scholar 

  3. Ueda E, Kurebayashi S, Sakaue M, Backlund M, Koller B, Jetten AM. High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORgamma. Cancer Res. 2002;62:901–9.

    CAS  PubMed  Google Scholar 

  4. Guntermann C, Piaia A, Hamel ML, Theil D, Rubic-Schneider T, Del Rio-Espinola A, et al. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. JCI Insight. 2017;2:e91127.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guo Y, MacIsaac KD, Chen Y, Miller RJ, Jain R, Joyce-Shaikh B, et al. Inhibition of RORgammaT skews TCRalpha gene rearrangement and limits T cell repertoire diversity. Cell Rep. 2016;17:3206–18.

    Article  CAS  PubMed  Google Scholar 

  6. Liljevald M, Rehnberg M, Soderberg M, Ramnegard M, Borjesson J, Luciani D, et al. Retinoid-related orphan receptor gamma (RORgamma) adult induced knockout mice develop lymphoblastic lymphoma. Autoimmun Rev. 2016;15:1062–70.

    Article  CAS  PubMed  Google Scholar 

  7. Jun S, Mahesula S, Mathews TP, Martin-Sandoval MS, Zhao Z, Piskounova E, et al. The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab. 2021;33:1777–92.

  8. Ramstead AG, Wallace JA, Lee SH, Bauer KM, Tang WW, Ekiz HA, et al. Mitochondrial pyruvate carrier 1 promotes peripheral T cell homeostasis through metabolic regulation of thymic development. Cell Rep. 2020;30:2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Odera JO, Xiong ZH, Huang CZ, Gu N, Yang WJ, Githang’a J, et al. NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on esophageal squamous cell carcinoma. Biochem J. 2020;477:3075–89.

    Article  CAS  PubMed  Google Scholar 

  11. Ma HY, Yamamoto G, Xu J, Liu X, Karin D, Kim JY, et al. IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J Hepatol. 2020;72:946–59.

    Article  CAS  PubMed  Google Scholar 

  12. Zakhari S, Li TK. Determinants of alcohol use and abuse: Impact of quantity and frequency patterns on liver disease. Hepatology. 2007;46:2032–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kishton RJ, Barnes CE, Nichols AG, Cohen S, Gerriets VA, Siska PJ, et al. AMPK is essential to balance glycolysis and mitochondrial metabolism to control T-ALL cell stress and survival. Cell Metab. 2016;23:649–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siler SQ, Neese RA, Christiansen MP, Hellerstein MK. The inhibition of gluconeogenesis following alcohol in humans. Am J Physiol-Endoc M. 1998;275:E897–E907.

    CAS  Google Scholar 

  15. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15:110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105:18782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–U100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Gene Dev. 2006;20:2096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evangelisti C, Ricci F, Tazzari P, Tabellini G, Battistelli M, Falcieri E, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 2011;25:781–91.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1 alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu S, Sun R, Gu X, Chen L, Liu M, Guo H, et al. Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcoholic steatohepatitis in mice. Hepatology. 2021;73:952–67.

  22. Wang RN, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 2011;35:871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu Y, Zhang J, Ma X, Kim BW, Wang H, Li J, et al. Stabilization of the c-Myc protein by CAMKIIgamma promotes T cell lymphoma. Cancer Cell. 2017;32:115–28 e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sears R, Leone G, DeGregori J, Nevins JR. Ras enhances Myc protein stability. Mol Cell. 1999;3:169–79.

    Article  CAS  PubMed  Google Scholar 

  25. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pollizzi KN, Waickman AT, Patel CH, Sun IH, Powell JD. Cellular size as a means of tracking mTOR activity and cell fate of CD4+T cells upon antigen recognition. Plos One. 2015;10:e0121710.

  28. Sun Z, Unutmaz D, Zou YR, Sunshine MJ, Pierani A, Brenner-Morton S, et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science. 2000;288:2369–73.

    Article  CAS  PubMed  Google Scholar 

  29. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  30. Gao YH, Zhou Z, Ren TY, Kim SJ, He Y, Seo W, et al. Alcohol inhibits T-cell glucose metabolism and hepatitis in ALDH2-deficient mice and humans: roles of acetaldehyde and glucocorticoids. Gut. 2019;68:1311–22.

    Article  CAS  PubMed  Google Scholar 

  31. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander, et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating. Cells Cell. 2015;162:552–63.

    Article  CAS  PubMed  Google Scholar 

  32. Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, et al. Glutathione primes T cell metabolism for inflammation. Immunity. 2017;46:675–89.

    Article  CAS  PubMed  Google Scholar 

  33. Choi WM, Kim HH, Kim MH, Cinar R, Yi HS, Eun HS, et al. Glutamate signaling in hepatic stellate cells drives alcoholic steatosis. Cell Metab. 2019;30:877–89 e877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Laplante M, Sabatini DM. mTOR Signaling in growth control and disease. Cell. 2012;149:274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao S, Yosef N, Yang J, Wang Y, Zhou L, Zhu C, et al. Small-molecule RORgammat antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40:477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scheepstra M, Leysen S, van Almen GC, Miller JR, Piesvaux J, Kutilek V, et al. Identification of an allosteric binding site for RORgammat inhibition. Nat Commun. 2015;6:8833.

    Article  PubMed  Google Scholar 

  37. Kurebayashi S, Ueda E, Sakaue M, Patel DD, Medvedev A, Zhang F, et al. Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci USA. 2000;97:10132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang K, Blanco DB, Chen X, Dash P, Neale G, Rosencrance C, et al. Metabolic signaling directs the reciprocal lineage decisions of alphabeta and gammadelta T cells. Sci Immunol. 2018;3:eaas9818.

  39. Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev. 2012;249:43–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalaitzidis D, Sykes SM, Wang Z, Punt N, Tang Y, Ragu C, et al. mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. Cell Stem Cell. 2012;11:429–39.

  41. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27:57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nevzorova YA, Cubero FJ, Hu W, Hao F, Haas U, Ramadori P, et al. Enhanced expression of c-myc in hepatocytes promotes initiation and progression of alcoholic liver disease. J Hepatol. 2016;64:628–40.

    Article  CAS  PubMed  Google Scholar 

  44. Shao T, Zhao C, Li F, Gu Z, Liu L, Zhang L, et al. Intestinal HIF-1alpha deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol. 2018;69:886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187–97.

    Article  CAS  PubMed  Google Scholar 

  46. MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31:259–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH R21AA025724, R21AI128206, R21AI159194 and R01 DK115406 (ZD), and NIH P50AA024337, P20GM113226, (CJM). We thank Dr. J. Ainsworth for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

ZD and RS designed the research, analyzed and interpreted data, and drafted the manuscript; RS, CL, LC, LH, and HG performed experiments and interpreted data; and WF, XZ, JY, and CJM interpreted the findings and reviewed the manuscript.

Corresponding author

Correspondence to Zhongbin Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Lei, C., Chen, L. et al. Alcohol-driven metabolic reprogramming promotes development of RORγt-deficient thymic lymphoma. Oncogene 41, 2287–2302 (2022). https://doi.org/10.1038/s41388-022-02257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02257-2

Search

Quick links