Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A micropeptide XBP1SBM encoded by lncRNA promotes angiogenesis and metastasis of TNBC via XBP1s pathway

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with a poor prognosis. To date, the mechanism of TNBC’s aggressive phenotype is still unclear. Based on metabolome analysis, we found that glutamine (Gln) metabolism plays a key role in the difference between TNBC and non-TNBC. We identified a 21-amino-acid survival-associated micropeptide XBP1SBM, encoded by the lncRNA MLLT4-AS1, which was upregulated in TNBC tissues and Gln-deprived TNBC cell lines. We showed that XBP1SBM expression was upregulated by Gln-deprivation-induced XBP1s transcriptional promotion, and in turn retained XBP1s in the nuclear to enhance the expression of VEGF. Using human endothelial cells, mouse xenograft models and mouse spontaneous BC models, we found that XBP1SBM improved Gln levels and promoted angiogenesis and metastasis in TNBC. Our study showed that a TNBC-specific nutrient deficiency adaption results in aggressive TNBC, and this mechanism provides a novel potential prognostic biomarker and therapeutic target in TNBC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of TNBC-specific and Gln-deprived-associated lncRNA with coding ability.
Fig. 2: XBP1SBM associated with TNBC tumor growth and overall survival of TNBC patients.
Fig. 3: XBP1s regulate MLLT4-AS1 transcription.
Fig. 4: XBP1SBM interact with XBP1s.
Fig. 5: XBP1SBM inhibits the interaction between XBP1s and XBP1u and regulates the subcellular localization of XBP1s.
Fig. 6: XBP1SBM promote TNBC angiogenesis and metastasis.
Fig. 7: XBP1SBM promotes TNBC angiogenesis and metastasis by regulating XBP1s pathway.

Similar content being viewed by others

References

  1. Brown M, Tsodikov A, Bauer KR, Parise CA, Caggiano V. The role of human epidermal growth factor receptor 2 in the survival of women with estrogen and progesterone receptor-negative, invasive breast cancer: the California Cancer Registry, 1999-2004. Cancer. 2008;112:737–47.

    Article  PubMed  Google Scholar 

  2. Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7:683–92.

    Article  PubMed  Google Scholar 

  3. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9:3588.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lebrun J-J, Bakdounes K, Tian J, Moamer A, Jean-Claude B, Raffa FA, et al. Dasatinib sensitises triple negative breast cancer cells to chemotherapy by targeting breast cancer stem cells. Br J Cancer. 2018;119:1495–507.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jiang Y-Z, Ma D, Suo C, Shi J, Xue M, Hu X, et al. Genomic and transcriptomic landscape of triple-negative breast cancers: subtypes and treatment strategies. Cancer Cell. 2019;35:1–13.

    Article  Google Scholar 

  6. Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, et al. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018;28:1–16.

    Article  Google Scholar 

  7. Wang Y, Bai C, Ruan Y, Liu M, Chu Q, Qiu L, et al. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-018-08033-9.

  8. Kung HN, Marks JR, Chi JT. Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia. PLoS Genet. 2011;7. https://doi.org/10.1371/journal.pgen.1002229.

  9. Shanware NP, Bray K, Eng CH, Wang F, Follettie M, Myers J, et al. Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion. Nat Commun. 2014;5:1–13.

    Article  Google Scholar 

  10. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.

    Article  CAS  PubMed  Google Scholar 

  11. Kaser A, Blumberg RS. Survive an innate immune response through XBP1. Cell Res. 2010;20:506–7.

    Article  PubMed  Google Scholar 

  12. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature. 2014;508:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev. 2011;91:1219–43.

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Zheng J, Deng J, You Y, Wu H, Li N, et al. Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells. Gastroenterology. 2014;146:1714–26.

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Zheng J, Deng J, Zhang L, Li N, Li W, et al. LincRNA-uc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene. 2015;34:4723–34.

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Li H, Zhang L, Hu M, Li F, Deng J, et al. Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem. 2017;292:5801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li F, Ma R, Zhang L, Lu J, An M, Wu S, et al. X chromosome-linked long noncoding RNA lnc-XLEC1 regulates c-Myc -dependent cell growth by collaborating with MBP-1 in endometrial cancer. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32166.

  18. Li W, Zhang L, Wu S, Deng J, Guo B, Li F, et al. Exosomal FMR1-AS1 facilitates maintaining cancer stem-like cell dynamic equilibrium via TLR7/NFκB/c-Myc signaling in female esophageal carcinoma. Mol Cancer. 2019;18:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 2013;154:240–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.

    Article  CAS  PubMed  Google Scholar 

  21. Choi S-W, Kim H-W, Nam J-W. The small peptide world in long noncoding RNAs. Brief Bioinform. 2018;20:1–12.

    Google Scholar 

  22. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang J-Z, Chen M, Chen D, Gao X-C, Zhu S, Huang H, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 2017;68:171–.e6.

    Article  CAS  PubMed  Google Scholar 

  24. Guo B, Wu S, Zhu X, Zhang L, Deng J, Li F, et al. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J. 2020;39:e102190.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Wu S, Zhu X, Zhang L, Deng J, Li F, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med. 2020;217. https://doi.org/10.1084/jem.20190950.

  26. Budczies J, Pfitzner BM, Györffy B, Winzer KJ, Radke C, Dietel M, et al. Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. 2015;136:1619–28.

    Article  CAS  PubMed  Google Scholar 

  27. Loayza-Puch F, Rooijers K, Buil LCM, Zijlstra J, Oude Vrielink JF, Lopes R, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530:490–4.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida H, Oku M, Suzuki M, Mori K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol. 2006;172:565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Outschoorn UE, Pestell RG, Peiris-Pagés M, Lisanti MP, Sotgia F. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2016;14:11–31.

    Article  PubMed  Google Scholar 

  30. Daikhin E, Thompson CB, Yudkoff M, Nissim I, Wehrli S, DeBerardinis RJ, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mayers JR, Vander Heiden MG. Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem Sci. 2015;40:130–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Timmerman LA, Holton T, Yuneva M, Louie RJ, Daemen A, Hu M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative basal-like breast cancer. Cancer Cell. 2013;24:450–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White E. Exploiting the bad eating habits of Ras-driven cancers. Genes Dev. 2013;27:2065–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J. 2017;36:1302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bielenberg DR, Zetter BR. The contribution of angiogenesis to the process of metastasis. Cancer J. 2015;21:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohammed RAA, Ellis IO, Mahmmod AM, Hawkes EC, Green AR, Rakha EA, et al. Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance. Mod Pathol. 2011;24:774–85.

    Article  CAS  PubMed  Google Scholar 

  37. Li H, Chen X, Gao Y, Wu J, Zeng F, Song F. XBP1 induces snail expression to promote epithelial- to-mesenchymal transition and invasion of breast cancer cells. Cell Signal. 2015;27:82–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kim RS, Hasegawa D, Goossens N, Tsuchida T, Athwal V, Sun X, et al. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci Rep. 2016;6:1–9.

    Article  CAS  Google Scholar 

  39. Hu R, Warri A, Jin L, Zwart A, Riggins RB, Fang H-B, et al. NF-κB signaling is required for XBP1 (unspliced and spliced)-mediated effects on antiestrogen responsiveness and cell fate decisions in breast cancer. Mol Cell Biol. 2015;35:379–90.

    Article  PubMed  Google Scholar 

  40. Liu L, Zhao M, Jin X, Ney G, Yang KB, Peng F, et al. Adaptive endoplasmic reticulum stress signalling via IRE1α–XBP1 preserves self-renewal of haematopoietic and pre-leukaemic stem cells. Nat Cell Biol. 2019;21:328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies MPA, Barraclough DL, Stewart C, Joyce KA, Eccles RM, Barraclough R, et al. Expression and splicing of the unfolded protein response gene XBP-1 are significantly associated with clinical outcome of endocrine-treated breast cancer. Int J Cancer. 2008;123:85–88.

    Article  CAS  PubMed  Google Scholar 

  42. Chassé H, Boulben S, Costache V, Cormier P, Morales J. Analysis of translation using polysome profiling. Nucleic Acids Res. 2016;45:gkw907.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Scientific Foundation of China grants 82103263, 81772544 and 81972649; The National Science Fund for Distinguished Young Scholars 82125027; Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07S096).

Author information

Authors and Affiliations

Authors

Contributions

SW and YZ designed the experiments, analyzed the data and revised the manuscript. SW wrote the manuscript. SW, LZ, and XZ performed most of the experiments. YW, BG, and FL performed the experiments. All of the authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Yifeng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Guo, B., Zhang, L. et al. A micropeptide XBP1SBM encoded by lncRNA promotes angiogenesis and metastasis of TNBC via XBP1s pathway. Oncogene 41, 2163–2172 (2022). https://doi.org/10.1038/s41388-022-02229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02229-6

This article is cited by

Search

Quick links