Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LINC01021 maintains tumorigenicity by enhancing N6-methyladenosine reader IMP2 dependent stabilization of MSX1 and JARID2: implication in colorectal cancer

Abstract

Insulin-like growth factor-2 mRNA-binding protein 2 (IGF2BP2, also known as IMP2), a novel class III N6-methyladenosine (m6A) reader, has recently gained attention due to its critical functions in recognizing and stabilizing m6A modified oncogenic transcripts. However, whether and how long non-coding RNAs (lncRNAs) facilitate IMP2’s role as m6A “reader” remains elusive, particularly in colorectal cancer (CRC). Here, we demonstrated that oncogenic LINC021 specifically bound with the m6A “reader” IMP2 protein and enhanced the mRNA stability of MSX1 and JARID2 in an m6A regulatory manner during CRC tumorigenesis and pathogenesis. Specifically, a remarkable upregulation of LINC021 was confirmed in CRC cell lines and clinical tissues (n = 130). High level of LINC021acted as an independent prognostic predictor for CRC clinical outcomes. Functional assays demonstrated that LINC021 exerted its functions as an oncogene to aggravate CRC malignant phenotypes including enhanced cell proliferation, colony formation, migration capabilities, and reduced cell apoptosis. Mechanistically, LINC021 directly recognized IMP2 protein, the latter enhanced the mRNA stability of transcripts such as MSX1 and JARID2 by recognizing their m6A-modified element RGGAC. Thus, these findings uncovered an essential LINC021/IMP2/MSX1 and JARID2 signaling axis in CRC tumorigenesis, which provided profound insights into our understanding of m6A modification regulated by lncRNA in CRC initiation and progression and shed light on the targeting of this axis for CRC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of upregulated LINC021 in CRC cells and patients.
Fig. 2: The biological functions of LINC021 on CRC cells.
Fig. 3: Identification of the direct interaction between LINC021 and IMP2 protein in CRC cells.
Fig. 4: The effect of IMP2 on biological characteristics regulating by LINC021 in CRC cells.
Fig. 5: IMP2 enhances the mRNA stability of MSX1 and JARID2 in CRC cells.
Fig. 6: The function of IMP2 stabilizing MSX1 and JARID2 mRNA on CRC cell proliferation regulated by LINC021.
Fig. 7: LINC021 promotes cell proliferation and growth by targeting IMP2 in vivo.
Fig. 8: Proposed model depicting regulation and roles of LINC021-IMP2-MSX1/ JARID2 signaling axis in CRC cells.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings in this study are available in this study and its Supplementary materials, or are available from the corresponding author through reasonable request. The Raw data were download from the Gene Expression Omnibus (GEO) website, show as follows:

GSE79053.

GSE41657.

GSM545207

GSM2051888

GSM545209

GSE104836.

References

  1. Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019;12:121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xiang Y, Laurent B, Hsu CH, Nachtergaele S, Lu Z, Sheng W, et al. RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yi YC, Chen XY, Zhang J, Zhu JS. Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer. Mol Cancer. 2020;19:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roignant JY, Soller M. m(6)A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet. 2017;33:380–90.

    Article  CAS  PubMed  Google Scholar 

  9. Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chatterji P, Rustgi AK. RNA binding proteins in intestinal epithelial biology and colorectal cancer. Trends Mol Med. 2018;24:490–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Degrauwe N, Suva ML, Janiszewska M, Riggi N, Stamenkovic I. IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev. 2016;30:2459–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muller S, Glass M, Singh AK, Haase J, Bley N, Fuchs T, et al. IGF2BP1 promotes SRF-dependent transcription in cancer in a m6A- and miRNA-dependent manner. Nucleic Acids Res. 2019;47:375–90.

    Article  PubMed  CAS  Google Scholar 

  15. Wang Q, Chen C, Ding Q, Zhao Y, Wang Z, Chen J, et al. METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut. 2020;69:1193–205.

    Article  CAS  PubMed  Google Scholar 

  16. Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN, et al. METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer. 2019;18:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Qu F, Tsegay PS, Liu Y. N(6)-methyladenosine, DNA repair, and genome stability. Front Mol Biosci. 2021;8:645823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Wang Y, Luo W, Song X, Huang L, Xiao J, et al. Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Theranostics. 2020;10:9407–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu H, Xu Y, Yao B, Sui T, Lai L, Li Z. A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death Dis. 2020;11:613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu X, Peng WX, Zhou H, Jiang J, Zhou X, Huang D, et al. IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ. 2020;27:1782–94.

    Article  CAS  PubMed  Google Scholar 

  21. Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y, et al. LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol. 2020;14:1282–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hunten S, Kaller M, Drepper F, Oeljeklaus S, Bonfert T, Erhard F, et al. p53-regulated networks of protein, mRNA, miRNA, and lncRNA expression revealed by integrated pulsed stable isotope labeling with amino acids in cell culture (pSILAC) and next generation sequencing (NGS) analyses. Mol Cell Proteom. 2015;14:2609–29.

    Article  CAS  Google Scholar 

  23. Zhou D, Tian F, Tian X, Sun L, Huang X, Zhao F, et al. Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer. Nat Commun. 2020;11:2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Francescangeli F, De Angelis ML, Zeuner A. Dietary factors in the control of gut homeostasis, intestinal stem cells, and colorectal cancer. Nutrients. 2019;11:2936

    Article  PubMed Central  Google Scholar 

  25. Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18:197

    Article  PubMed Central  CAS  Google Scholar 

  26. Meyer J, Orci LA, Combescure C, Balaphas A, Morel P, Buchs NC, et al. Risk of colorectal cancer in patients with acute diverticulitis: a systematic review and meta-analysis of observational studies. Clin Gastroenterol Hepatol. 2019;17:1448–56.e1417.

    Article  PubMed  Google Scholar 

  27. Zhao Y, Chen Y, Jin M, Wang J. The crosstalk between m(6)A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics. 2021;11:4549–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai F, Wu Y, Lu Y, An C, Zheng X, Dai L, et al. Crosstalk between RNA m(6)A modification and non-coding RNA contributes to cancer growth and progression. Mol Ther Nucleic Acids. 2020;22:62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan RIN, Malla WA. m(6)A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics. 2021;113:2860–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Hu K, Yang YQ, Wang Y, Zheng YF, Jin Y, et al. LIN28B-AS1-IGF2BP1 binding promotes hepatocellular carcinoma cell progression. Cell Death Dis. 2020;11:741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, et al. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 2019;18:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3. Mol Cancer. 2019;18:143.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Geng X, Li Q, Xu J, Tan Y, Xiao M, et al. m6A modification in RNA: biogenesis, functions and roles in gliomas. J Exp Clin Cancer Res. 2020;39:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhou Z, Lv J, Yu H, Han J, Yang X, Feng D, et al. Mechanism of RNA modification N6-methyladenosine in human cancer. Mol Cancer. 2020;19:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao W, Qi X, Liu L, Ma S, Liu J, Wu J. Epigenetic regulation of m(6)A modifications in human cancer. Mol Ther Nucleic Acids. 2020;19:405–12.

    Article  CAS  PubMed  Google Scholar 

  36. Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell. 2020;181:1582–95.e1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong J, Flavell RA, Li HB. RNA m(6)A modification and its function in diseases. Front Med. 2018;12:481–9.

    Article  PubMed  Google Scholar 

  38. Lu S, Han L, Hu X, Sun T, Xu D, Li Y, et al. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer. J Hematol Oncol. 2021;14:188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cance. Int J Mol Sci. 2019;20:5758.

    Article  PubMed Central  CAS  Google Scholar 

  40. Ferre F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform. 2016;17:106–16.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou B, Yang H, Yang C, Bao YL, Yang SM, Liu J, et al. Translation of noncoding RNAs and cancer. Cancer Lett. 2021;497:89–99.

    Article  CAS  PubMed  Google Scholar 

  42. Hou P, Meng S, Li M, Lin T, Chu S, Li Z, et al. LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res. 2021;40:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, et al. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 2021;40:1609–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, et al. m(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 2020;19:72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heppt MV, Wang JX, Hristova DM, Wei Z, Li L, Evans B, et al. MSX1-induced neural crest-like reprogramming promotes melanoma progression. J Invest Dermatol. 2018;138:141–9.

    Article  CAS  PubMed  Google Scholar 

  46. Adhikari A, Mainali P, Davie JK. JARID2 and the PRC2 complex regulate the cell cycle in skeletal muscle. J Biol Chem. 2019;294:19451–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the efforts and contributions of doctors, nurses, and technical staff at the First Hospital of China Medical University, Cancer Hospital of China Medical University.

Funding

This work was supported by grants from the National Natural Science Foundation of China (81872905, 82073884), Science and Technology Innovative Foundation for Young and Middle-aged Scientists of Shenyang City (RC200382), Shenyang High Level Talent Innovation and Entrepreneurship Team (2019-SYRCCY-B-01), and Major Special S&T Projects in Liaoning Province [2019JH1/10300005].

Author information

Authors and Affiliations

Authors

Contributions

HW, MW, and XD conceived and designed the project. HW, XD, QC, TS, XH, HG, ML, ZG, WY, LZ, KL performed experiments and/or data acquisition and analyses; HW, XD, QC, TS, XH, HG, ML, KL contributed technical/reagents materials, analytic tools and/or grant support; HW, MW, KL, and XD prepared, wrote, and/or revision the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kai Li or Minjie Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of China Medical University. The animal experiments (CMU2020184) performed in this study were approved by the Institutional Animal Care and Use Committee of China Medical University.

Consent for publication

All of the authors have written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Ding, X., Hu, X. et al. LINC01021 maintains tumorigenicity by enhancing N6-methyladenosine reader IMP2 dependent stabilization of MSX1 and JARID2: implication in colorectal cancer. Oncogene 41, 1959–1973 (2022). https://doi.org/10.1038/s41388-022-02189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02189-x

This article is cited by

Search

Quick links