Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CircVPS13C promotes pituitary adenoma growth by decreasing the stability of IFITM1 mRNA via interacting with RRBP1

Abstract

CircRNAs play important roles in a variety of biological processes by acting as microRNA sponges and protein scaffolds or by encoding functional proteins. However, their functions and underlying mechanisms remain largely unknown. Distinctive circRNA patterns were explored by comparing nonfunctioning pituitary adenomas (NFPAs) and normal pituitary tissues with a circRNA array. The biological functions of selected circRNAs were determined in vitro and in vivo. RNA-seq and circRNA pulldown assays were applied to investigate the underlying mechanisms. The circRNA profile of NFPAs is tremendously different from that of normal pituitary tissues. CircVPS13C is significantly upregulated in NFPA samples and cell lines. Gain- and loss-of-function experiments demonstrate that silencing circVPS13C inhibits the proliferation of pituitary tumor cells in vitro and in vivo. Mechanistically, circVPS13C silencing increases the expression of IFITM1 and subsequently activates its downstream genes involved in MAPK- and apoptosis-associated signaling pathways. Rescue experiments show that IFITM1 overexpression partly reverses the biological effects of circVPS13C. Further studies reveal that circVPS13C inhibits IFITM1 expression through a novel mechanism mainly by competitively interacting with RRBP1, a ribosome-binding protein of the endoplasmic reticulum membrane, and thereby alleviating the stability of IFITM1 mRNA. Clinically, circVPS13C expression is markedly higher in high-risk NFPA samples and is downregulated in patient serum 7 days post-transsphenoidal adenoma resection. Our findings suggest that circVPS13C is a critical regulator in the proliferation and development of NFPAs through a novel mechanism, whereby regulating mRNA stability via interacting with ribosome-binding proteins on the endoplasmic reticulum membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differential circRNA expression between NFPA (n = 10) and NP tissues (n = 4) and significantly increased circVPS13C expression in NFPA samples.
Fig. 2: Identification and validation of circVPS13C in pituitary adenoma cells.
Fig. 3: Silencing of circVPS13C inhibits the proliferation of NFPA cells partly by increasing apoptosis.
Fig. 4: Silencing of circVPS13C inhibits cell proliferation partly by upregulating IFITM1 expression.
Fig. 5: CircVPS13C alleviates the stability of IFITM1 mRNA by interacting with RRBP1.
Fig. 6: CircVPS13C suppresses IFITM1 expression by competitively interacting with RRBP1.
Fig. 7: Clinical significance of circVPS13C in NFPAs.

Similar content being viewed by others

Data availability

Clinical information of samples and primers used in the present study can be found in supplementary tables. Other original data in our study are available upon request.

References

  1. Agustsson TT, Baldvinsdottir T, Jonasson JG, Olafsdottir E, Steinthorsdottir V, Sigurdsson G, et al. The epidemiology of pituitary adenomas in Iceland, 1955-2012: a nationwide population-based study. Eur J Endocrinol. 2015;173:655–64.

    Article  CAS  PubMed  Google Scholar 

  2. Aflorei ED, Korbonits M. Epidemiology and etiopathogenesis of pituitary adenomas. J Neurooncol. 2014;117:379–94.

    Article  PubMed  Google Scholar 

  3. Esposito D, Olsson DS, Ragnarsson O, Buchfelder M, Skoglund T, Johannsson G. Non-functioning pituitary adenomas: indications for pituitary surgery and post-surgical management. Pituitary. 2019;22:422–34.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mete O, Lopes MB. Overview of the 2017 WHO classification of pituitary tumors. Endocr Pathol. 2017;28:228–43.

    Article  CAS  PubMed  Google Scholar 

  5. Melmed S. Pituitary-tumor endocrinopathies. N Engl J Med. 2020; 382:937–50.

  6. Jasim S, Alahdab F, Ahmed AT, Tamhane S, Prokop LJ, Nippoldt TB, et al. Mortality in adults with hypopituitarism: a systematic review and meta-analysis. Endocrine. 2017;56:33–42.

    Article  CAS  PubMed  Google Scholar 

  7. Song ZJ, Reitman ZJ, Ma ZY, Chen JH, Zhang QL, Shou XF, et al. The genome-wide mutational landscape of pituitary adenomas. Cell Res. 2016;26:1255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yacqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol. 2012;8:486–94.

    Article  CAS  PubMed  Google Scholar 

  9. Ng WL, Mohd MT, Shukla K. Functional role of circular RNAs in cancer development and progression. Rna Biol. 2018;15:995–1005.

    PubMed  PubMed Central  Google Scholar 

  10. Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang A, Zheng H, Wu Z, Chen M, Huang Y. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 2020;10:3503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  13. Du Q, Hu B, Feng Y, Wang Z, Wang X, Zhu D, et al. circOMA1-mediated miR-145-5p suppresses tumor growth of nonfunctioning pituitary adenomas by targeting TPT1. J Clin Endocrinol Metab. 2019;104:2419–34.

    Article  PubMed  Google Scholar 

  14. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24:357–70.

    Article  CAS  PubMed  Google Scholar 

  16. Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu D, et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther. 2017;25:2062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66:22–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110:304–15.

    Article  CAS  Google Scholar 

  19. Jagannathan S, Hsu JC, Reid DW, Chen Q, Thompson WJ, Moseley AM, et al. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. J Biol Chem. 2014;289:25907–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cui XA, Zhang H, Palazzo AF. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol. 2012;10:e1001336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–90.

    Article  CAS  PubMed  Google Scholar 

  22. Suojun Z, Feng W, Dongsheng G, Ting L. Targeting Raf/MEK/ERK pathway in pituitary adenomas. Eur J Cancer. 2012;48:389–95.

    Article  PubMed  Google Scholar 

  23. Yang G, Xu Y, Chen X, Hu G. IFITM1 plays an essential role in the antiproliferative action of interferon-gamma. Oncogene. 2007;26:594–603.

    Article  CAS  PubMed  Google Scholar 

  24. Hatano H, Kudo Y, Ogawa I, Tsunematsu T, Kikuchi A, Abiko Y, et al. IFN-induced transmembrane protein 1 promotes invasion at early stage of head and neck cancer progression. Clin Cancer Res. 2008;14:6097–105.

    Article  CAS  PubMed  Google Scholar 

  25. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 2009;139:1243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pan Y, Cao F, Guo A, Chang W, Chen X, Ma W, et al. Endoplasmic reticulum ribosome-binding protein 1, RRBP1, promotes progression of colorectal cancer and predicts an unfavourable prognosis. Br J Cancer. 2015;113:763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsai HY, Yang YF, Wu AT, Yang CJ, Liu YP, Jan YH, et al. Endoplasmic reticulum ribosome-binding protein 1 (RRBP1) overexpression is frequently found in lung cancer patients and alleviates intracellular stress-induced apoptosis through the enhancement of GRP78. Oncogene. 2013;32:4921–31.

    Article  CAS  PubMed  Google Scholar 

  28. Hyde M, Block-Alper L, Felix J, Webster P, Meyer DI. Induction of secretory pathway components in yeast is associated with increased stability of their mRNA. J Cell Biol. 2002;156:993–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piovesan D, Minervini G, Tosatto SC. The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res. 2016;44:W367–W374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kristensen LS, Andersen MS, Stagsted L, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20:675–91.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, et al. The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer. 2020;19:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5:16435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19:218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yánez DC, Ross S, Crompton T. The IFITM protein family in adaptive immunity. Immunology. 2020;159:365–72.

    Article  PubMed  Google Scholar 

  36. Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature. 2015;522:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deblandre GA, Marinx OP, Evans SS, Majjaj S, Leo O, Caput D, et al. Expression cloning of an interferon-inducible 17-kDa membrane protein implicated in the control of cell growth. J Biol Chem. 1995;270:23860–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yu F, Xie D, Ng SS, Lum CT, Cai MY, Cheung WK, et al. IFITM1 promotes the metastasis of human colorectal cancer via CAV-1. Cancer Lett. 2015;368:135–43.

    Article  CAS  PubMed  Google Scholar 

  39. Escher TE, Lui AJ, Geanes ES, Walter KR, Tawfik O, Hagan CR, et al. Interaction between MUC1 and STAT1 drives IFITM1 overexpression in aromatase inhibitor-resistant breast cancer cells and mediates estrogen-induced apoptosis. Mol Cancer Res. 2019;17:1180–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Li L, Xi Y, Sun R, Wang H, Ren Y, et al. Combination of IFITM1 knockdown and radiotherapy inhibits the growth of oral cancer. Cancer Sci. 2018;109:3115–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Savitz AJ, Meyer DI. 180-kD ribosome receptor is essential for both ribosome binding and protein translocation. J Cell Biol. 1993;120:853–63.

    Article  CAS  PubMed  Google Scholar 

  42. Liang X, Sun S, Zhang X, Wu H, Tao W, Liu T, et al. Expression of ribosome-binding protein 1 correlates with shorter survival in Her-2 positive breast cancer. Cancer Sci. 2015;106:740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Danila DC, Zhang X, Zhou Y, Dickersin GR, Fletcher JA, Hedley-Whyte ET, et al. A human pituitary tumor-derived folliculostellate cell line. J Clin Endocrinol Metab. 2000;85:1180–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China for Young Scholars (grant number 81702479 to XJ), Guangdong Basic and Applied Basic Research Foundation (grant number 2020A151501281 to XJ), Science and Technology Program of Jiangmen, China (grant number 2018630100110019805 to YM), and the Natural Science Foundation of Jiangsu Province (grant number BK20200936 to QD).

Author information

Authors and Affiliations

Authors

Contributions

WZ, SC, QD, PB, and YC carried out experiments and participated in data analysis, statistical analysis, and manuscript preparation. YM, KS, and ZC collected samples. ZL, WZ, and SC participated in data analysis. ZZ, WZ, and XJ participated in writing and proofreading the manuscript. XJ and XF designed the study, were involved in the whole process, and were guarantors of the integrity of the entire study.

Corresponding authors

Correspondence to Xiang Fan or Xiaobing Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Informed consent, including a tissue sharing clause, was obtained from a family member of the deceased individual before the autopsy. The use of human tissues in the study was approved by the medical ethics committee of Sun Yat-sen University Cancer Center.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chen, S., Du, Q. et al. CircVPS13C promotes pituitary adenoma growth by decreasing the stability of IFITM1 mRNA via interacting with RRBP1. Oncogene 41, 1550–1562 (2022). https://doi.org/10.1038/s41388-022-02186-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02186-0

This article is cited by

Search

Quick links