Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subsets of cancer cells expressing CX3CR1 are endowed with metastasis-initiating properties and resistance to chemotherapy

Abstract

Metastasis-initiating cells (MICs) display stem cell-like features, cause metastatic recurrences and defy chemotherapy, which leads to patients’ demise. Here we show that prostate and breast cancer patients harbor contingents of tumor cells with high expression of CX3CR1, OCT4a (POU5F1), and NANOG. Impairing CX3CR1 expression or signaling hampered the formation of tumor spheroids by cell lines from which we isolated small subsets co-expressing CX3CR1 and stemness-related markers, similarly to patients’ tumors. These rare CX3CR1High cells show transcriptomic profiles enriched in pathways that regulate pluripotency and endowed with metastasis-initiating behavior in murine models. Cancer cells lacking these features (CX3CR1Low) were capable of re-acquiring CX3CR1-associated features over time, implying that MICs can continuously emerge from non-stem cancer cells. CX3CR1 expression also conferred resistance to docetaxel, and prolonged treatment with docetaxel selected CX3CR1High phenotypes with de-enriched transcriptomic profiles for apoptotic pathways. These findings nominate CX3CR1 as a novel marker of stem-like tumor cells and provide conceptual ground for future development of approaches targeting CX3CR1 signaling and (re)expression as therapeutic means to prevent or contain metastasis initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CX3CR1High cancer cells are detected in patient samples from primary and metastatic breast and prostate cancers.
Fig. 2: Formation of tumor spheroids depends on CX3CR1 expression and signaling.
Fig. 3: Sub-populations of CX3CR1High cancer cells demonstrate stemness features.
Fig. 4: CX3CR1 promotes colonization of disseminated tumor cells. Human cancer cells co-expressing GFP and Luc2 luciferase were grafted in the systemic blood circulation of mice, which were either killed 24 h later to assess tumor seeding or longitudinally monitored for tumor growth by bioluminescence imaging.
Fig. 5: CX3CR1High cells are tumor-initiating.
Fig. 6: CX3CR1Low cells exhibit phenotypic plasticity.
Fig. 7: CX3CR1High cells show resistance to docetaxel.

Similar content being viewed by others

Data availability

RNA-Seq data have been deposited in the NCBI GEO with the submission code PRJNA736860.

Molecular Signature database (MSigDB) and gene set enrichment analysis were utilized for pathways analyses.

References

  1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.

    Article  PubMed  Google Scholar 

  2. Ganesh K, Massagué J. Targeting metastatic cancer. Nat Med. 2021;27:34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Riihimäki M, Thomsen H, Sundquist K, Sundquist J, Hemminki K. Clinical landscape of cancer metastases. Cancer Med. 2018;7:5534–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med-US. 2019;8:5574–6.

    Article  Google Scholar 

  5. Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529:298–306.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ignatiadis M, Georgoulias V, Mavroudis D. Micrometastatic disease in breast cancer: clinical implications. Eur J Cancer. 2008;44:2726–36.

    Article  CAS  PubMed  Google Scholar 

  7. Riethdorf S, Wikman H, Pantel K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer J Int DU Cancer. 2008;123:1991–2006.

    Article  CAS  Google Scholar 

  8. Obenauf AC, Massagué J. Surviving at a distance: organ specific metastasis. Trends Cancer. 2015;1:76–91.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 2017;31:1827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Bado IL, Hu J, Wan Y-W, Wu L, Wang H, et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184:2471–2486.e20.

    Article  CAS  PubMed  Google Scholar 

  12. Celià-Terrassa T, Kang Y. Distinctive properties of metastasis-initiating cells. Genes Dev. 2016;30:892–908.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Celià-Terrassa T, Kang Y. Metastatic niche functions and therapeutic opportunities. Nat Cell Biol. 2018;20:868–77.

    Article  PubMed  Google Scholar 

  14. Esposito M, Kang Y. Targeting tumor–stromal interactions in bone metastasis. Pharmacol Ther. 2014;141:222–33.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou H, Neelakantan D, Ford HL. Clonal cooperativity in heterogenous cancers. Semin Cell Dev Biol. 2017;64:79–89.

    Article  PubMed  Google Scholar 

  16. Liu A, Yu X, Liu S. Pluripotency transcription factors and cancer stem cells: small genes make a big difference. Chin J Cancer. 2013;32:483–7.

    PubMed  PubMed Central  Google Scholar 

  17. Wang Y-J, Herlyn M. The emerging roles of Oct4 in tumor-initiating cells. Am J Physiol- Cell Physiol. 2015;309:C709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40:499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23:1124–34.

    Article  CAS  PubMed  Google Scholar 

  20. Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 2015;7:27–36.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell. 2018;24:65–78.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen W, Dong J, Haiech J, Kilhoffer M-C, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016;2016:1–16.

    Google Scholar 

  23. Das PK, Pillai S, Rakib MDA, Khanam JA, Gopalan V, Lam AKY, et al. Plasticity of cancer stem cell: origin and role in disease progression and therapy resistance. Stem Cell Rev Rep. 2020;16:397–412.

    Article  PubMed  Google Scholar 

  24. Qureshi-Baig K, Ullmann P, Haan S, Letellier E. Tumor-initiating cells: a critical review of isolation approaches and new challenges in targeting strategies. Mol Cancer. 2017;16:40.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao W, Li Y, Zhang X. Stemness-related markers in cancer. Cancer Transl Med. 2017;3:87–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walcher L, Kistenmacher A-K, Suo H, Kitte R, Dluczek S, Strauß A, et al. Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morein D, Erlichman N, Ben-Baruch A. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy. Front. Immunol. 2020;11:952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997;91:521–30.

    Article  CAS  PubMed  Google Scholar 

  29. Shulby S, Dolloff N, Stearns M, Meucci O, Fatatis A. CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res. 2004;64:4693–8.

    Article  CAS  PubMed  Google Scholar 

  30. Fong A, Robinson L, Steeber D, Tedder T, Yoshie O, Imai T, et al. Fractalkine and CX3CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. J Exp Med. 1998;188:1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen F, Zhang Y, Jernigan DL, Feng X, Yan J, Garcia FU, et al. Novel small-molecule CX3CR1 antagonist impairs metastatic seeding and colonization of breast cancer cells. Mol Cancer Res: MCR. 2016;14:518–27.

    Article  CAS  PubMed  Google Scholar 

  32. Qian C, Worrede-Mahdi A, Shen F, DiNatale A, Kaur R, Zhang Q, et al. Impeding circulating tumor cell reseeding decelerates metastatic progression and potentiates chemotherapy. Mol Cancer Res: MCR. 2018;16:1844–54.

    Article  CAS  PubMed  Google Scholar 

  33. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi G, Jin Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res Ther. 2010;1:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim J, Liu Y, Qiu M, Xu Y. Pluripotency factor Nanog is tumorigenic by deregulating DNA damage response in somatic cells. Oncogene. 2016;35:1334–40.

    Article  CAS  PubMed  Google Scholar 

  36. Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. 2007;67:4807–15.

    Article  CAS  PubMed  Google Scholar 

  37. Gassenmaier M, Chen D, Buchner A, Henkel L, Schiemann M, Mack B, et al. CXC chemokine receptor 4 is essential for maintenance of renal cell carcinoma-initiating cells and predicts metastasis. Stem Cells. 2013;31:1467–76.

    Article  CAS  PubMed  Google Scholar 

  38. Lombardo Y, Giorgio A de, Coombes CR, Stebbing J, Castellano L. Mammosphere formation assay from human breast cancer tissues and cell lines. J. Vis. Exp. 2015. https://doi.org/10.3791/52671.

  39. Haskell CA, Cleary MD, Charo IF. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction. Rapid flow arrest of CX3CR1-expressing cells is independent of G-protein activation. J Biol Chem. 1999;274:10053–8.

    Article  CAS  PubMed  Google Scholar 

  40. Stojic L, Lun ATL, Mangei J, Mascalchi P, Quarantotti V, Barr AR, et al. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res. 2018;46:5950–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell. 2016;18:541–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 Axis. Stem Cells. 2005;23:879–94.

    Article  CAS  PubMed  Google Scholar 

  43. Jiao X, Nawab O, Patel T, Kossenkov AV, Halama N, Jaeger D, et al. Recent advances targeting CCR5 for cancer and its role in immuno-oncology. Cancer Res. 2019;79:4801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hatse S, Princen K, Bridger G, Clercq ED, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 2002;527:255–62.

    Article  CAS  PubMed  Google Scholar 

  45. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrobial Agents Chemother. 2005;49:4721–32.

    Article  CAS  Google Scholar 

  46. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14:329–40.

    Article  CAS  PubMed  Google Scholar 

  47. JavanMoghadam-Kamrani S, Keyomarsi K. Synchronization of the cell cycle using Lovastatin. Cell Cycle. 2008;7:2434–40.

    Article  CAS  PubMed  Google Scholar 

  48. Mantovani A, Savino B, Locati M, Zammataro L, Allavena P, Bonecchi R. The chemokine system in cancer biology and therapy. Cytokine Growth Factor Rev. 2010;21:27–39.

    Article  CAS  PubMed  Google Scholar 

  49. Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 2006;79:639–51.

    Article  CAS  PubMed  Google Scholar 

  50. Jamieson WL, Shimizu S, D’Ambrosio JA, Meucci O, Fatatis A. CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res. 2008;68:1715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jamieson-Gladney WL, Zhang Y, Fong AM, Meucci O, Fatatis A. The chemokine receptor CX3CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res: BCR. 2011;13:1584.

    Article  Google Scholar 

  52. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer. Cells Cell. 2011;146:633–44.

    Article  CAS  PubMed  Google Scholar 

  53. Yuan S, Norgard RJ, Stanger BZ. Cellular plasticity in cancer. Cancer Discov. 2019;9:837–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thankamony AP, Saxena K, Murali R, Jolly MK, Nair R. Cancer Stem cell plasticity – a deadly deal. Fronti. Mol. Biosci. 2020; 7: 79.

  55. Annett S, Robson T. Targeting cancer stem cells in the clinic: current status and perspectives. Pharmacol Ther. 2018;187:13–30.

    Article  CAS  PubMed  Google Scholar 

  56. Quayle LA, Ottewell PD, Holen I. Chemotherapy resistance and stemness in mitotically quiescent human breast cancer cells identified by fluorescent dye retention. Clin Exp Metastasis. 2018;35:831–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. King KM, Lupichuk S, Baig L, Webster M, Basi S, Whyte D, et al. Optimal use of taxanes in metastatic breast cancer. Curr Oncol. 2009;16:8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Palmeri L, Vaglica M, Palmeri S. Weekly docetaxel in the treatment of metastatic breast cancer. Ther Clin Risk Manag. 2008;4:1047–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Agarwal N, Lorenzo GD, Sonpavde G, Bellmunt J. New agents for prostate cancer. Ann Oncol. 2014;25:1700–9.

    Article  CAS  PubMed  Google Scholar 

  60. Huang L, Ma B, Ma J, Wang F. Fractalkine/CX3CR1 axis modulated the development of pancreatic ductal adenocarcinoma via JAK/STAT signaling pathway. Biochem Biophys Res Commun. 2017;493:1510–7.

    Article  CAS  PubMed  Google Scholar 

  61. Kim M, Rooper L, Xie J, Kajdacsy-Balla AA, Barbolina MV. Fractalkine receptor CX(3)CR1 is expressed in epithelial ovarian carcinoma cells and required for motility and adhesion to peritoneal mesothelial cells. Mol Cancer Res: MCR. 2012;10:11–24.

    Article  CAS  PubMed  Google Scholar 

  62. Main HG, Xie J, Muralidhar GG, Elfituri O, Xu H, Kajdacsy-Balla AA et al. Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from epithelial ovarian carcinoma. Oncogene. 2016. https://doi.org/10.1038/onc.2016.456.

  63. Liu Y, Ma H, Dong T, Yan Y, Sun L, Wang W. Clinical significance of expression level of CX3CL1–CX3CR1 axis in bone metastasis of lung cancer. Clin Transl Oncol. 2020; 1–11.

  64. Locatelli M, Boiocchi L, Ferrero S, Martinelli Boneschi F, Zavanone M, Pesce S, et al. Human glioma tumors express high levels of the chemokine receptor CX3CR1. Eur Cytokine Netw. 2010;21:27–33.

    Article  CAS  PubMed  Google Scholar 

  65. Erreni M, Solinas G, Brescia P, Osti D, Zunino F, Colombo P, et al. Human glioblastoma tumours and neural cancer stem cells express the chemokine CX3CL1 and its receptor CX3CR1. Eur J Cancer. 2010;46:3383–92.

    Article  CAS  PubMed  Google Scholar 

  66. Francescone R, Vendramini-Costa DB, Franco-Barraza J, Wagner J, Muir A, Lau AN, et al. Netrin G1 promotes pancreatic tumorigenesis through cancer-associated fibroblast–driven nutritional support and immunosuppression. Cancer Discov. 2021;11:446–79.

    Article  CAS  PubMed  Google Scholar 

  67. Yao X, Qi L, Chen X, Du J, Zhang Z, Liu S. Expression of CX3CR1 associates with cellular migration, metastasis, and prognosis in human clear cell renal cell carcinoma. Urol Oncol: Semin Original Investig. 2014;32:162–70.

    Article  CAS  Google Scholar 

  68. Lee S-J, Namkoong S, Kim Y-M, Kim C-K, Lee H, Ha K-S, et al. Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways. Am J Physiol-heart C. 2006;291:H2836–H2846.

    Article  CAS  Google Scholar 

  69. Wada A, Ito A, Iitsuka H, Tsuneyama K, Miyazono T, Murakami J, et al. Role of chemokine CX3CL1 in progression of multiple myeloma via CX3CR1 in bone microenvironments. Oncol Rep. 2015;33:2935–9.

    Article  CAS  PubMed  Google Scholar 

  70. LaFave LM, Levine RL. JAK2 the future: therapeutic strategies for JAK-dependent malignancies. Trends Pharm Sci. 2012;33:574–82.

    Article  CAS  PubMed  Google Scholar 

  71. Kato H, Liao Z, Mitsios JV, Wang H-Y, Deryugina EI, Varner JA, et al. The primacy of β1 integrin activation in the metastatic cascade. PLoS One. 2012;7:e46576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, et al. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thrombosis Res. 2016;140:S27–S36.

    Article  CAS  Google Scholar 

  73. Zheng DQ, Woodard AS, Fornaro M, Tallini G, Languino LR. Prostatic carcinoma cell migration via alpha(v)beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res. 1999;59:1655–64.

    CAS  PubMed  Google Scholar 

  74. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70:6071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, et al. Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol. 2018;20:966–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Geng Y, Marshall JR, King MR. Glycomechanics of the metastatic cascade: tumor cell-endothelial cell interactions in the circulation. Ann Biomed Eng. 2012;40:790–805.

    Article  PubMed  Google Scholar 

  77. Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:676731–10.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Worrede A, Meucci O, Fatatis A. Limiting tumor seeding as a therapeutic approach for metastatic disease. Pharmacol Ther 2019. https://doi.org/10.1016/j.pharmthera.2019.03.007.

  79. Ramsey DM, McAlpine SR. Halting metastasis through CXCR4 inhibition. Bioorg Med Chem Lett. 2013;23:20–25.

    Article  CAS  PubMed  Google Scholar 

  80. Mukherjee D, Zhao J. The Role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res. 2013;3:46–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gravina GL, Mancini A, Muzi P, Ventura L, Biordi L, Ricevuto E, et al. CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models. Prostate. 2015;75:1227–46.

    Article  CAS  PubMed  Google Scholar 

  82. Singh SK, Mishra MK, Eltoum I-EA, Bae S, Lillard JW, Singh R. CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci Rep. 2018;8:1323.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shen Y, Yao H, Li A, Wang M. CSCdb: a cancer stem cells portal for markers, related genes and functional information. Database 2016; 2016: baw023.

  84. Karatas OF, Guzel E, Duz MB, Ittmann M, Ozen M. The role of ATP‐binding cassette transporter genes in the progression of prostate cancer. Prostate. 2016;76:434–44.

    Article  CAS  PubMed  Google Scholar 

  85. Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: multifaceted players with incipient potentialities in cancer. Semin Cancer Biol. 2019;60:57–71.

    Article  PubMed  Google Scholar 

  86. Chimento A, Casaburi I, Avena P, Trotta F, Luca AD, Rago V, et al. Cholesterol and its metabolites in tumor growth: therapeutic potential of statins in cancer treatment. Front Endocrinol. 2019;9:807.

    Article  Google Scholar 

  87. P Chadrakesan, J Panneerselvam. Regulatory roles of Dclk1 in epithelial mesenchymal transition and cancer stem cells. J Carcinog Mutagen. 2016; 2016. https://doi.org/10.4172/2157-2518.1000257.

  88. Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene. 2016;584:111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang J, Gao C, Chai L, Ma Y. A Novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. Plos One. 2010;5:e10766.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yang J. SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomark Res. 2018;6:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rao S, Roumiantsev S, McDonald L, Orkin SH. The role Of Sall4 in embryonic stem cell pluripotency. Biol Blood Marrow Tr. 2010;16:S187.

    Article  Google Scholar 

  92. Tsubooka N, Ichisaka T, Okita K, Takahashi K, Nakagawa M, Yamanaka S. Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells. 2009;14:683–94.

    Article  CAS  PubMed  Google Scholar 

  93. Yang J, Chai L, Fowles TC, Alipio Z, Xu D, Fink LM, et al. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc Natl Acad Sci. 2008;105:19756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci. 2011;108:7950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: how to strike the evil at its root. Adv Drug Deliv Rev. 2017;120:89–107.

    Article  PubMed  Google Scholar 

  96. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.

    Article  CAS  PubMed  Google Scholar 

  97. Do DV, Ueda J, Messerschmidt DM, Lorthongpanich C, Zhou Y, Feng B, et al. A genetic and developmental pathway from STAT3 to the OCT4-NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes Dev. 2013;27:1378–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim S-Y, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT, et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 2013;25:961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang XP, Mattagajasingh S, Su S, Chen G, Cai Z, Fox-Talbot K, et al. Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circulation Res. 2007;101:1001–8.

    Article  CAS  PubMed  Google Scholar 

  100. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154:61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krebs AM, Mitschke J, Losada ML, Schmalhofer O, Boerries M, Busch H, et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol. 2017;19:518–29.

    Article  CAS  PubMed  Google Scholar 

  102. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li W, Ma H, Zhang J, Zhu L, Wang C, Yang Y. Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep.-UK. 2017;7:13856.

    Article  Google Scholar 

  104. Zhao Y, Dong Q, Li J, Zhang K, Qin J, Zhao J, et al. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol. 2018;53:139–55.

    Article  CAS  PubMed  Google Scholar 

  105. Pein M, Insua-Rodríguez J, Hongu T, Riedel A, Meier J, Wiedmann L, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel malignant colonization of the lungs. Nat Commun. 2020;11:1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19:607–14.

    Article  CAS  PubMed  Google Scholar 

  109. Carroll AG, Voeller HJ, Sugars L, Gelmann EP. p53 oncogene mutations in three human prostate cancer cell lines. Prostate. 1993;23:123–34.

    Article  CAS  PubMed  Google Scholar 

  110. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  111. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  112. Holohan C, Schaeybroeck SV, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    Article  CAS  PubMed  Google Scholar 

  113. Wang M, Stearns ME. Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D. mice. Differ Res Biol Divers 1991;48:115–25.

    CAS  Google Scholar 

  114. Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU, et al. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene. 2017;36:2846–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NCI grant R01-CA202929 (AF and OM), DoD grant BC150659 (AF), Wallace H. Coulter Foundation (AF and OM), Pennsylvania Breast Cancer Coalition (AF), Exceptional Project Grant from Breast Cancer Alliance (AF), and the Sidney Kimmel Cancer Center (SKCC) Support Grant 5P30CA056036-21 (AF). We would like to thank: Dr. Meenhard Herlyn (Wistar Institute, Philadelphia, PA) and Dr. Edward Hartsough (Pharmacology and Physiology, Drexel University College of Medicine) for providing the WM793 and 1205Lu human melanoma cell lines; Dr. Edward Hartsough (Pharmacology and Physiology, Drexel University College of Medicine) and Dr. Josep Domingo-Domenech (Cancer Biology, SKCC at Thomas Jefferson University) for helpful discussions; Dr. Paolo Fortina, Professor of Cancer Biology and Director of the Cancer Genomics and Translational Research/Pathology core services at SKCC for consultation and advice with RNA Sequencing; Ms. Shannon Cremin (Translational Research Project Manager), Ms. Danielle Wentworth (Biorepository Manager) and the SKCC Biorepository of Thomas Jefferson University for providing the human specimens used in this study. The authors are also grateful to Dr. Bradley Nash (Director, Office of Scientific Communications, Department of Pharmacology and Physiology, Drexel University College of Medicine) for critically reading and editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AD: Conceptualization, investigation, data generation (molecular biology, biochemistry, flow cytometry and cell sorting, cell culturing and in vitro treatments), data analysis, methodology, manuscript writing, reviewing and editing. RK: Conceptualization, data generation (tumor spheroids assay, biochemistry, chemotaxis assay, animal models of tumor seeding and initiation, flow cytometry and cell sorting), data analysis, manuscript editing. CQ: Conceptualization, data generation (tumor spheroids assay, flow cytometry and cell sorting, animal models of tumor seeding). JZ: Data generation (biochemistry, flow cytometry and cell sorting), data analysis (human samples), manuscript editing. MM: Data generation (immunohistochemistry). DI: Data generation (Flow cytometry and sorting), data analysis (human samples), methodology, manuscript editing. MC: Data generation (immunohistochemistry, biochemistry). CMM: Data analysis (RNA sequencing) and data curation. GK: Data generation and analysis (RNA sequencing), data curation, manuscript reviewing and editing. OM: Conceptualization, resources, formal analysis, funding acquisition. AF: Conceptualization, investigation, supervision, resources, funding acquisition, data analysis, formal analysis, methodology, writing original draft, manuscript reviewing and editing.

Corresponding author

Correspondence to Alessandro Fatatis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiNatale, A., Kaur, R., Qian, C. et al. Subsets of cancer cells expressing CX3CR1 are endowed with metastasis-initiating properties and resistance to chemotherapy. Oncogene 41, 1337–1351 (2022). https://doi.org/10.1038/s41388-021-02174-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02174-w

Search

Quick links