Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130

Abstract

Macrophages are increased in human benign prostatic hyperplasia and prostate cancer. We generate a Pb-Csf1 mouse model with prostate-specific overexpression of macrophage colony-stimulating factor (M-Csf/Csf1). Csf1 overexpression promotes immune cell infiltration into the prostate, modulates the macrophage polarity in a lobe-specific manner, and induces senescence and low-grade prostatic intraepithelial neoplasia (PIN). The Pb-Csf1 prostate luminal cells exhibit increased stem cell features and undergo an epithelial-to-mesenchymal transition. Human prostate cancer patients with high CSF-1 expression display similar transcriptional alterations with the Pb-Csf1 model. P53 knockout alleviates senescence but fails to progress PIN lesions. Ablating epithelial Gp130 but not Il1r1 substantially blocks PIN lesion formation. The androgen receptor (AR) is downregulated in Pb-Csf1 mice. ChIP-Seq analysis reveals altered AR binding in 2482 genes although there is no significant widespread change in global AR transcriptional activity. Collectively, our study demonstrates that increased macrophage infiltration causes PIN formation but fails to transform prostate cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Csf1 overexpression recruits immune cells and alters polarization of macrophage in mouse prostate.
Fig. 2: Csf1 overexpression causes prostatic intraepithelial neoplasia.
Fig. 3: RNA-seq reveals inflammation-induced molecular changes in prostate luminal cells.
Fig. 4: Csf1 overexpression increases EMT and progenitor activity-related gene signatures.
Fig. 5: Attenuating p53-mediated senescence promotes initiation of PIN lesions.
Fig. 6: Il6-Gp130 signaling is necessary for formation of Csf1-induced prostate intraepithelial neoplasia.
Fig. 7: Prostate inflammation alters AR transcriptome.

Similar content being viewed by others

Code availability

RNA-Seq data have been deposited to GEO: GSA134326.

References

  1. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer. 2007;7:256–69.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  3. Kazma R, Mefford JA, Cheng I, Plummer SJ, Levin AM, Rybicki BA, et al. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk. PLoS One. 2012;7:e51680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Platz EA, Kulac I, Barber JR, Drake CG, Joshu CE, Nelson WG, et al. A prospective study of chronic inflammation in benign prostate tissue and risk of prostate cancer: linked PCPT and SELECT cohorts. Cancer Epidemiol, Biomark Prev: a Publ Am Assoc Cancer Res, cosponsored Am Soc Preventive Oncol. 2017;26:1549–57.

    Article  Google Scholar 

  5. Gurel B, Lucia MS, Thompson IM Jr., Goodman PJ, Tangen CM, Kristal AR, et al. Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol, Biomark Prev: a Publ Am Assoc Cancer Res, cosponsored Am Soc Preventive Oncol. 2014;23:847–56.

    Article  Google Scholar 

  6. Dennis LK, Lynch CF, Torner JC. Epidemiologic association between prostatitis and prostate cancer. Urology. 2002;60:78–83.

    Article  PubMed  Google Scholar 

  7. De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol. 1999;155:1985–92.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Endo Y, Marusawa H, Kinoshita K, Morisawa T, Sakurai T, Okazaki IM, et al. Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene. 2007;26:5587–95.

    Article  CAS  PubMed  Google Scholar 

  9. Hmadcha A, Bedoya FJ, Sobrino F, Pintado E. Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med. 1999;190:1595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Debelec-Butuner B, Alapinar C, Varisli L, Erbaykent-Tepedelen B, Hamid SM, Gonen-Korkmaz C, et al. Inflammation-mediated abrogation of androgen signaling: an in vitro model of prostate cell inflammation. Mol carcinogenesis. 2014;53:85–97.

    Article  CAS  Google Scholar 

  11. Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H. et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell . 2006;124:615–29.

    Article  CAS  PubMed  Google Scholar 

  12. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwon OJ, Zhang B, Zhang L, Xin L. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells. Stem cell Res. 2016;16:682–91.

    Article  CAS  PubMed  Google Scholar 

  14. Kwon OJ, Zhang L, Ittmann MM, Xin L. Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proc Natl Acad Sci USA. 2014;111:E592–600.

    Article  CAS  PubMed  Google Scholar 

  15. Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L, et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res. 2008;68:6762–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, et al. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature. 2007;446:690–4.

    Article  CAS  PubMed  Google Scholar 

  17. Birbach A, Eisenbarth D, Kozakowski N, Ladenhauf E, Schmidt-Supprian M, Schmid JA. Persistent inflammation leads to proliferative neoplasia and loss of smooth muscle cells in a prostate tumor model. Neoplasia. 2011;13:692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Elkahwaji JE, Zhong W, Hopkins WJ, Bushman W. Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate. 2007;67:14–21.

    Article  PubMed  Google Scholar 

  19. Fong L, Ruegg CL, Brockstedt D, Engleman EG, Laus R. Induction of tissue-specific autoimmune prostatitis with prostatic acid phosphatase immunization: implications for immunotherapy of prostate cancer. J Immunol. 1997;159:3113–7.

    CAS  PubMed  Google Scholar 

  20. Haverkamp JM, Charbonneau B, Crist SA, Meyerholz DK, Cohen MB, Snyder PW, et al. An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate. Prostate. 2011;71:1139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khalili M, Mutton LN, Gurel B, Hicks JL, De Marzo AM, Bieberich CJ. Loss of Nkx3.1 expression in bacterial prostatitis: a potential link between inflammation and neoplasia. Am J Pathol. 2010;176:2259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barron DA, Strand DW, Ressler SJ, Dang TD, Hayward SW, Yang F, et al. TGF-beta1 induces an age-dependent inflammation of nerve ganglia and fibroplasia in the prostate gland stroma of a novel transgenic mouse. PLoS One. 2010;5:e13751.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu G, Zhang J, Frey L, Gang X, Wu K, Liu Q, et al. Prostate-specific IL-6 transgene autonomously induce prostate neoplasm through amplifying inflammation in the prostate and peri-prostatic adipose tissue. J Hematol Oncol. 2017;10:14.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang X, Lin WJ, Izumi K, Jiang Q, Lai KP, Xu D, et al. Increased infiltrated macrophages in benign prostatic hyperplasia (BPH): role of stromal androgen receptor in macrophage-induced prostate stromal cell proliferation. J Biol Chem. 2012;287:18376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000;17:445–51.

    CAS  PubMed  Google Scholar 

  26. Zhang B, Kwon OJ, Henry G, Malewska A, Wei X, Zhang L, et al. Non-cell-autonomous regulation of prostate epithelial homeostasis by androgen receptor. Mol cell. 2016;63:976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harbor perspectives in biology. 2014;6:1–21.

    Article  Google Scholar 

  28. Kirma N, Luthra R, Jones J, Liu YG, Nair HB, Mandava U, et al. Overexpression of the colony-stimulating factor (CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation. Cancer Res. 2004;64:4162–70.

    Article  CAS  PubMed  Google Scholar 

  29. Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-kappaB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic acids Res. 2017;45:619–30.

    Article  CAS  PubMed  Google Scholar 

  30. Park JH, Walls JE, Galvez JJ, Kim M, Abate-Shen C, Shen MM, et al. Prostatic intraepithelial neoplasia in genetically engineered mice. Am J Pathol. 2002;161:727–35.

    Article  PubMed  PubMed Central  Google Scholar 

  31. The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

  32. Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, et al. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol. 2015;235:478–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shinohara DB, Vaghasia AM, Yu SH, Mak TN, Bruggemann H, Nelson WG, et al. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate. 2013;73:1007–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vignozzi L, Cellai I, Santi R, Lombardelli L, Morelli A, Comeglio P, et al. Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J Endocrinol. 2012;214:31–43.

    Article  CAS  PubMed  Google Scholar 

  35. Cioni B, Zaalberg A, van Beijnum JR, Melis MHM, van Burgsteden J, Muraro MJ, et al. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat Commun. 2020;11:4498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ormandy CJ, Clarke CL, Kelly PA, Sutherland RL. Androgen regulation of prolactin-receptor gene expression in MCF-7 and MDA-MB-453 human breast cancer cells. Int J cancer J Int du cancer. 1992;50:777–82.

    Article  CAS  Google Scholar 

  37. Graham TR, Yacoub R, Taliaferro-Smith L, Osunkoya AO, Odero-Marah VA, Liu T, et al. Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast cancer Res Treat. 2010;123:139–47.

    Article  CAS  PubMed  Google Scholar 

  38. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102.

    Article  CAS  PubMed  Google Scholar 

  40. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4.

    Article  CAS  PubMed  Google Scholar 

  41. Chan KS, Sano S, Kiguchi K, Anders J, Komazawa N, Takeda J, et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J Clin Investig. 2004;114:720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strobel O, Dor Y, Alsina J, Stirman A, Lauwers G, Trainor A, et al. In vivo lineage tracing defines the role of acinar-to-ductal transdifferentiation in inflammatory ductal metaplasia. Gastroenterology. 2007;133:1999–2009.

    Article  PubMed  Google Scholar 

  43. Husaini Y, Qiu MR, Lockwood GP, Luo XW, Shang P, Kuffner T, et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) slows cancer development but increases metastases in TRAMP prostate cancer prone mice. PLoS One. 2012;7:e43833. Epub 2012/09/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–5.

    Article  CAS  PubMed  Google Scholar 

  45. Kortlever RM, Sodir NM, Wilson CH, Burkhart DL, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001;193:727–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ide H, Seligson DB, Memarzadeh S, Xin L, Horvath S, Dubey P, et al. Expression of colony-stimulating factor 1 receptor during prostate development and prostate cancer progression. Proc Natl Acad Sci USA. 2002;99:14404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell. 2017;32:654–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vignozzi L, Morelli A, Sarchielli E, Comeglio P, Filippi S, Cellai I, et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J Endocrinol. 2012;212:71–84.

    Article  CAS  PubMed  Google Scholar 

  50. Maggio M, Basaria S, Ceda GP, Ble A, Ling SM, Bandinelli S, et al. The relationship between testosterone and molecular markers of inflammation in older men. J endocrinological Investig. 2005;28:116–9.

    CAS  Google Scholar 

  51. Maggio M, Blackford A, Taub D, Carducci M, Ble A, Metter EJ, et al. Circulating inflammatory cytokine expression in men with prostate cancer undergoing androgen deprivation therapy. J Androl. 2006;27:725–8.

    Article  CAS  PubMed  Google Scholar 

  52. Sorrentino C, Musiani P, Pompa P, Cipollone G, Di Carlo E. Androgen deprivation boosts prostatic infiltration of cytotoxic and regulatory T lymphocytes and has no effect on disease-free survival in prostate cancer patients. Clin Cancer Res. 2011;17:1571–81.

    Article  CAS  PubMed  Google Scholar 

  53. Traish A, Bolanos J, Nair S, Saad F, Morgentaler A. Do androgens modulate the pathophysiological pathways of inflammation? appraising the contemporary evidence. J Clin Med. 2018;7:549.

  54. Becerra-Diaz M, Strickland AB, Keselman A, Heller NM. Androgen and androgen receptor as enhancers of M2 macrophage polarization in allergic lung inflammation. J Immunol. 2018;201:2923–33.

    Article  CAS  PubMed  Google Scholar 

  55. Chen T, Wang LH, Farrar WL. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res. 2000;60:2132–5.

    CAS  PubMed  Google Scholar 

  56. Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, et al. NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol. 2009;175:489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Z, Hu L, Salari K, Bechis SK, Ge R, Wu S, et al. Androgenic to oestrogenic switch in the human adult prostate gland is regulated by epigenetic silencing of steroid 5alpha-reductase 2. J Pathol. 2017;243:457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Leach DA, Panagopoulos V, Nash C, Bevan C, Thomson AA, Selth LA, et al. Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Mol Cell Endocrinol. 2017;439:261–72.

    Article  CAS  PubMed  Google Scholar 

  59. Valdez JM, Zhang L, Su Q, Dakhova O, Zhang Y, Shahi P, et al. Notch and TGFbeta form a reciprocal positive regulatory loop that suppresses murine prostate basal stem/progenitor cell activity. cell stem cell. 2012;11:676–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hewitt SC, Li L, Grimm SA, Chen Y, Liu L, Li Y, et al. Research resource: whole-genome estrogen receptor alpha binding in mouse uterine tissue revealed by ChIP-seq. Mol Endocrinol. 2012;26:887–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fen Wang for the ARR2PB-Cre mice, Dr. Rodger McEver for the Gp130fl/fl mice, and Dr. Richard Stanley for the mouse Csf-1 cDNA. This work is supported by R01CA190378, R01DK092202 and R01DK107436 (L.X.).

Author information

Authors and Affiliations

Authors

Contributions

LX, BZ, and OK designed the experiments. OK, BZ, LZ, XW, ZZ, DJ, KTH, DL and KZ performed experiments. OK, BZ, YZ, PL, CJC, MH, AS, CB, and LX analyzed the data. LX wrote the manuscript with input from other authors. OK and BZ contributed equally to the work.

Corresponding author

Correspondence to Li Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, OJ., Zhang, B., Jia, D. et al. Elevated expression of the colony-stimulating factor 1 (CSF1) induces prostatic intraepithelial neoplasia dependent of epithelial-Gp130. Oncogene 41, 1309–1323 (2022). https://doi.org/10.1038/s41388-021-02169-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02169-7

This article is cited by

Search

Quick links