Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting glutamine metabolism network for the treatment of therapy-resistant prostate cancer

Abstract

Advanced and aggressive prostate cancer (PCa) depends on glutamine for survival and proliferation. We have previously shown that inhibition of glutaminase 1, which catalyzes the rate-limiting step of glutamine catabolism, achieves significant therapeutic effect; however, therapy resistance is inevitable. Here we report that while the glutamine carbon is critical to PCa survival, a parallel pathway of glutamine nitrogen catabolism that actively contributes to pyrimidine assembly is equally important for PCa cells. Importantly, we demonstrate a reciprocal feedback mechanism between glutamine carbon and nitrogen pathways which leads to therapy resistance when one of the two pathways is inhibited. Combination treatment to inhibit both pathways simultaneously yields better clinical outcome for advanced PCa patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glutamine carbon and nitrogen are required equivalently for tumor survival in advanced PCa.
Fig. 2: Glutamine nitrogen is largely enriched in nucleotide biosynthesis.
Fig. 3: Glutamine carbon is associated with glutamine nitrogen in building pyrimidine rings in PCa.
Fig. 4: CAD plays a predominant role in advanced PCa.
Fig. 5: Reciprocal regulation between glutamine carbon and nitrogen metabolism in PCa.
Fig. 6: Synergistic effect of CAD and GLS1inhibtion.
Fig. 7: PI3K-AKT signaling phosphorylates CAD in advanced PCa.

Similar content being viewed by others

References

  1. Rawla P. Epidemiology of Prostate Cancer. World J Oncol. 2019;10:63–89. https://doi.org/10.14740/wjon1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Swami U, McFarland TR, Nussenzveig R, Agarwal N, Advanced prostate cancer: treatment advances and future directions. Trends Cancer. 2020;6:702–15. https://doi.org/10.1016/j.trecan.2020.04.010.

    Article  CAS  PubMed  Google Scholar 

  3. Spetsieris N, Boukovala M, Patsakis G, Alafis I, Efstathiou E. Neuroendocrine and aggressive-variant prostate cancer. Cancers. 2020;12:ARTN 3792. https://doi.org/10.3390/cancers12123792.

  4. Li Y, He Y, Butler W, Xu L, Chang Y, Kefeng L, et al. Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Sci Transl Med. 2019;11. https://doi.org/10.1126/scitranslmed.aax0428.

  5. Yin Y, Xu L, Chang Y, Zeng T, Chen X, Wang A, et al. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway. Mol Cancer. 2019;18:11. https://doi.org/10.1186/s12943-019-0941-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bergers G, Fendt SM. The metabolism of cancer cells during metastasis. Nat Rev Cancer. 2021. https://doi.org/10.1038/s41568-020-00320-2.

  7. Park JH, Pyun WY, Park HW. Cancer metabolism: phenotype, signaling and therapeutic targets. Cells-Basel. 2020;9:ARTN 2308. https://doi.org/10.3390/cells9102308.

  8. Yoo HC, Yu YC, Sung Y, Han JM. Glutamine reliance in cell metabolism. Exp Mol Med. 2020;52:1496–516. https://doi.org/10.1038/s12276-020-00504-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu L, Yin Y, Li Y, Chen X, Chang Y, Zhang H, et al. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc Natl Acad Sci USA. 2021;118, https://doi.org/10.1073/pnas.2012748118.

  10. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34. https://doi.org/10.1038/nrc.2016.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Biancur DE, Paulo JA, Malachowska B, Rey MQDR, Sousa CM, Wang X, et al. Compensatory metabolic networks inpancreatic cancers upon perturbation of glutamine metabolism. Nat Commun. 2017;8:15965. https://doi.org/10.1038/ncomms15965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Achreja A, Yeung T, Mangala L, Jiang D, Han C, et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016;24:685–700. https://doi.org/10.1016/j.cmet.2016.10.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Bai C, Ruan Y, Liu M, Chu Q, Yang C, et al. Coordinative metabolism of glutamine carbon and nitrogen in proliferating cancer cells under hypoxia. Nat Commun. 2019;10:201. https://doi.org/10.1038/s41467-018-08033-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lane AN, Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466–85. https://doi.org/10.1093/nar/gkv047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oizel K, Tait-Mulder J, Fernandez-de-Cossio-Diaz J, Pietzke M, Brunton H, Lilla S, et al. Formate induces a metabolic switch in nucleotide and energy metabolism. Cell Death Dis. 2020;11:310. https://doi.org/10.1038/s41419-020-2523-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bott AJ, Maimouni S, Zong WX. The pleiotropic effects of glutamine metabolism in cancer. Cancers. 2019;11:770. https://doi.org/10.3390/cancers11060770.

    Article  CAS  PubMed Central  Google Scholar 

  17. Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. Embo J. 2017;36:1302–15. https://doi.org/10.15252/embj.201696151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 2017;3:169–80. https://doi.org/10.1016/j.trecan.2017.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22:298–305. https://doi.org/10.1038/nm.4045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Disco. 2011;1:487–95. https://doi.org/10.1158/2159-8290.Cd-11-0130.

    Article  CAS  Google Scholar 

  21. Grasso CS, Wu Y, Robinson D, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43. https://doi.org/10.1038/nature11125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R.Alumkal P, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174:758. https://doi.org/10.1016/j.cell.2018.06.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver B, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22. https://doi.org/10.1016/j.ccr.2010.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339:1323–8. https://doi.org/10.1126/science.1228792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S, et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science. 2013;339:1320–3. https://doi.org/10.1126/science.1228771.

    Article  CAS  PubMed  Google Scholar 

  26. Crumbaker M, Khoja L, Joshua AM. AR signaling and the PI3K pathway in prostate cancer. Cancers. 2017;9:34. https://doi.org/10.3390/cancers9040034.

    Article  CAS  PubMed Central  Google Scholar 

  27. Chen M, Zhang J, Sampieri K, Clohessy JG, Mendez L, Gonzalez-Billalabeitia E, et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat Genet. 2018;50:206. https://doi.org/10.1038/s41588-017-0027-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jamaspishvili T, Berman DM, Ross AE, Scher HI, Marzo AMD, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15:222–34. https://doi.org/10.1038/nrurol.2018.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park JW, Lee JK, Phillips JW, Huang P, Cheng D, Huang J, et al. Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. P Natl Acad Sci USA. 2016;113:4482–7. https://doi.org/10.1073/pnas.1603645113.

    Article  CAS  Google Scholar 

  30. Wang X, Yang K, Wu Q, Kim LJY, Morton AR, Gimple RC, et al. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci Transl Med. 2019;11:eaau4972. https://doi.org/10.1126/scitranslmed.aau4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 2016;23:517–28. https://doi.org/10.1016/j.cmet.2016.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kodama M, Oshikawa K, Shimizu H, Yoshioka S, Takahashi M, Izumi Y, et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer. Nat Commun. 2020;11:1320. https://doi.org/10.1038/s41467-020-15136-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Z, Liu F, Fan N, Zhou C, Li D, Macvicar T, et al. Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies. Front Oncol. 2020;10:589508. https://doi.org/10.3389/fonc.2020.589508.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu X, Ma R, Wu YS, Zhai YS, Li SS. Reciprocal regulation of metabolic reprogramming and epigenetic modifications in cancer. Front Genet. 2018;9:394. https://doi.org/10.3389/fgene.2018.00394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell. 2011;19:575–86. https://doi.org/10.1016/j.ccr.2011.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mulholland DJ, Tran LM, Li Y, Cai H, Morim A, Wang S, et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell. 2011;19:792–804. https://doi.org/10.1016/j.ccr.2011.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res. 2014;20:3198–210. https://doi.org/10.1158/1078-0432.CCR-13-3296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by DOD-W81XWH-19-1-0411 (JH), DOD-W81XWH2110034 (LX), K99-K99CA237618 (XG), Prostate Cancer Foundation Movember Valor Challenge Award (2018).

Author information

Authors and Affiliations

Authors

Contributions

LX and JH conceived and designed the study and relevant experiments. LX, BZ, WB, HX, NS, SH, HZ, DM and JH performed experiments, analyzed and interpreted the data. XG performed metabolic profiling and tracing experiments. JG conducted immunuhistochemical staining. QY and YZ performed bioinformatics and statistical analyses. XC and YH assisted animal studies. LX and JH supervised the study, interpreted the data and co-wrote the manuscript. All authors discussed the results, revised and approved the manuscript.

Corresponding author

Correspondence to Jiaoti Huang.

Ethics declarations

Competing interests

JH is a consultant for or owns shares in the following companies: Kingmed, MoreHealth, OptraScan, Genetron, Omnitura, Vetonco, York Biotechnology, Genecode, VIVA Biotechnology and Sisu Pharma.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhao, B., Butler, W. et al. Targeting glutamine metabolism network for the treatment of therapy-resistant prostate cancer. Oncogene 41, 1140–1154 (2022). https://doi.org/10.1038/s41388-021-02155-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02155-z

This article is cited by

Search

Quick links