Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyruvate dehydrogenase inactivation causes glycolytic phenotype in BAP1 mutant uveal melanoma

Abstract

Effective therapeutic options are still lacking for uveal melanoma (UM) patients who develop metastasis. Metastatic traits of UM are linked to BRCA1-associated protein 1 (BAP1) mutations. Cell metabolism is re-programmed in UM with BAP1 mutant UM, but the underlying mechanisms and opportunities for therapeutic intervention remain unclear. BAP1 mutant UM tumors have an elevated glycolytic gene expression signature, with increased expression of pyruvate dehydrogenase (PDH) complex and PDH kinase (PDHK1). Furthermore, BAP1 mutant UM cells showed higher levels of phosphorylated PDHK1 and PDH that was associated with an upregulated glycolytic profile compared to BAP1 wild-type UM cells. Suppressing PDHK1-PDH phosphorylation decreased glycolytic capacity and cell growth, and induced cell cycle arrest of BAP1 mutant UM cells. Our results suggest that PDHK1-PDH phosphorylation is a causative factor of glycolytic phenotypes found in BAP1 mutant UM and propose a therapeutic opportunity for BAP1 mutant UM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BAP1 mutant UM tumors have elevated mRNA levels related to PDC and PDHK1.
Fig. 2: BAP1 mutant UM cells have elevated PDHK1-PDH phosphorylation.
Fig. 3: BAP1 mutant UM cells have increased glycolytic profiles.
Fig. 4: Suppression of PDH phosphorylation decreased the glycolytic capacity of BAP1 mutant UM cells.
Fig. 5: Inhibition of PDH phosphorylation reduces cell survival of BAP1 mutant UM cells.
Fig. 6: Suppression of PDH phosphorylation leads to the cell cycle arrest in BAP1 mutant UM cells.
Fig. 7: UM patient survival curve based on PDC and PDHK1 expression.

Similar content being viewed by others

References

  1. Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 2017;11:279–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh N, Bergman L, Seregard S, Singh AD. Uveal melanoma: epidemiologic aspects. Ocul Oncol Pathol. 2014;18:75–84.

    Google Scholar 

  3. Chua V, Aplin AE. Novel therapeutic strategies and targets in advanced uveal melanoma. Curr Opin Oncol. 2018;30:134–41.

    Article  CAS  PubMed  Google Scholar 

  4. Heppt MV, Amaral T, Kähler KC, Heinzerling L, Hassel JC, Meissner M, et al. Combined immune checkpoint blockade for metastatic uveal melanoma: a retrospective, multi-center study. J Immunother Cancer. 2019;7:299.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carvajal RD, Piperno-Neumann S, Kapiteijn E, Chapman PB, Frank S, Joshua AM, et al. Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a phase III, multicentre, randomised trial (SUMIT). J Clin Oncol. 2018;36:1232–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chua V, Mattei J, Han A, Johnston L, LiPira K, Selig SM, et al. The latest on uveal melanoma research and clinical trials: updates from the cure ocular melanoma (CURE OM) science meeting (2019). Clin Cancer Res. 2021;27:28–33.

    Article  CAS  PubMed  Google Scholar 

  7. Han A, Schug ZT, Aplin AE. Metabolic alterations and therapeutic opportunities in rare forms of melanoma. Trends Cancer. 2021;7:671–81.

    Article  CAS  PubMed  Google Scholar 

  8. Nanda CS, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: genome meets metabolism. Br J Cancer. 2019:1–14.

  9. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hutton JE, Wang X, Zimmerman LJ, Slebos RJ, Trenary IA, Young JD, et al. Oncogenic KRAS and BRAF drive metabolic reprogramming in colorectal cancer. Mol Cell Proteom. 2016;15:2924–38.

    Article  CAS  Google Scholar 

  11. Chen C-Y, Chen J, He L, Stiles BL. PTEN: tumor suppressor and metabolic regulator. Front Endocrinol. 2018;9:338.

    Article  Google Scholar 

  12. Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010;330:1410–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Field MG, Durante MA, Anbunathan H, Cai LZ, Decatur CL, Bowcock AM, et al. Punctuated evolution of canonical genomic aberrations in uveal melanoma. Nat Commun. 2018;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carbone M, Harbour JW, Brugarolas J, Bononi A, Pagano I, Dey A, et al. Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 2020;10:1103–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32:204–20.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han A, Purwin TJ, Aplin AE. Roles of the BAP1 tumor suppressor in cell metabolism. Cancer Res. 2021;81:2807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bononi A, Yang H, Giorgi C, Patergnani S, Pellegrini L, Su M, et al. Germline BAP1 mutations induce a Warburg effect. Cell Death Differ. 2017;24:1694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baughman JM, Rose CM, Kolumam G, Webster JD, Wilkerson EM, Merrill AE, et al. NeuCode proteomics reveals Bap1 regulation of metabolism. Cell Rep. 2016;16:583–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han A, Purwin TJ, Bechtel N, Liao C, Chua V, Seifert E, et al. BAP1 mutant uveal melanoma is stratified by metabolic phenotypes with distinct vulnerability to metabolic inhibitors. Oncogene. 2021;40:618–32.

    Article  CAS  PubMed  Google Scholar 

  21. Chua V, Han A, Bechtel N, Purwin TJ, Hunter E, Liao C, et al. The AMP-dependent kinase pathway is upregulated in BAP1 mutant uveal melanoma. Pigment Cell. Melanoma Res. 2021;00:1–10. https://doi.org/10.1111/pcmr.13007.

    Article  CAS  Google Scholar 

  22. Nguyen GK, Mellnick VM, Yim AK-Y, Salter A, Ippolito JE. Synergy of sex differences in visceral fat measured with CT and tumor metabolism helps predict overall survival in patients with renal cell carcinoma. Radiology. 2018;287:884–92.

    Article  PubMed  Google Scholar 

  23. Chattopadhyay C, Oba J, Roszik J, Marszalek JR, Chen K, Qi Y, et al. Elevated endogenous SDHA drives pathological metabolism in highly metastatic uveal melanoma. Investig Ophthalmol Vis Sci. 2019;60:4187–95.

    Article  CAS  Google Scholar 

  24. Saunier E, Benelli C, Bortoli S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int J Cancer. 2016;138:809–17.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Zhang S-L, Hu X, Tam KY. Targeting tumor metabolism for cancer treatment: is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? Int J Biol Sci. 2015;11:1390–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Jiang Y, Meisenhelder J, Yang W, Hawke DH, Zheng Y, et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis. Mol Cell. 2016;61:705–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stacpoole PW. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst. 2017;109:djx071. https://doi.org/10.1093/jnci/djx071.

    Article  CAS  Google Scholar 

  28. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Ann Nutr Metab. 2014;11:1–9.

    Google Scholar 

  30. Zachar Z, Marecek J, Maturo C, Gupta S, Stuart SD, Howell K, et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med. 2011;89:1137–48.

    Article  CAS  PubMed  Google Scholar 

  31. Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, et al. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 2020;11:1–10.

    Article  Google Scholar 

  32. Johansson PA, Brooks K, Newell F, Palmer JM, Wilmott JS, Pritchard AL, et al. Whole genome landscapes of uveal melanoma show an ultraviolet radiation signature in iris tumours. Nat Commun. 2020;11:1–8.

    Article  Google Scholar 

  33. Kalirai H, Dodson A, Faqir S, Damato B, Coupland S. Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer. 2014;111:1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karlsson J, Nilsson LM, Mitra S, Alsén S, Shelke GV, Sah VR, et al. Molecular profiling of driver events in metastatic uveal melanoma. Nat Commun. 2020;11:1–13.

    Article  Google Scholar 

  35. Di Nunno V, Frega G, Santoni M, Gatto L, Fiorentino M, Montironi R, et al. BAP1 in solid tumors. Future Oncol. 2019;15:2151–62.

    Article  PubMed  Google Scholar 

  36. Wang A, Papneja A, Hyrcza M, Al-Habeeb A, Ghazarian D. Gene of the month: BAP1. J Clin Pathol. 2016;69:750–3.

    Article  CAS  PubMed  Google Scholar 

  37. Hebert L, Bellanger D, Guillas C, Campagne A, Dingli F, Loew D, et al. Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function. Oncotarget. 2017;8:72513–27.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nie H, Ju H, Fan J, Shi X, Cheng Y, Cang X, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun. 2020;11:1–14.

    Article  Google Scholar 

  39. Forma E, Jóźwiak P, Bryś M, Krześlak A. The potential role of O-GlcNAc modification in cancer epigenetics. Cell Mol Biol Lett. 2014;19:438–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruan H-B, Han X, Li M-D, Singh JP, Qian K, Azarhoush S, et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1α stability. Cell Metab. 2012;16:226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kennedy BE, Murphy JP, Clements DR, Konda P, Holay N, Kim Y, et al. Inhibition of pyruvate dehydrogenase kinase enhances the antitumor efficacy of oncolytic reovirus. Cancer Res. 2019;79:3824–36.

    Article  CAS  PubMed  Google Scholar 

  42. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol Metab. 2020;33:83–101.

    Article  CAS  PubMed  Google Scholar 

  44. Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, et al. The genetic evolution of metastatic uveal melanoma. Nat Genet. 2019;51:1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eldredge-Hindy H, Ohri N, Anne PR, Eschelman D, Gonsalves C, Intenzo C, et al. Yttrium-90 microsphere brachytherapy for liver metastases from uveal melanoma: clinical outcomes and the predictive value of fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2016;39:189–95.

    CAS  Google Scholar 

  46. Cai Z, Li CF, Han F, Liu C, Zhang A, Hsu CC, et al. Phosphorylation of PDHA by AMPK drives TCA cycle to promote cancer metastasis. Mol Cell. 2020;80:263–78 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39(39):6139–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pascual G, Domínguez D, Benitah SA. The contributions of cancer cell metabolism to metastasis. Dis Model Mech. 2018;11:dmm032920.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Meir T, Dror R, Yu X, Qian J, Simon I, Pe’er J, et al. Molecular characteristics of liver metastases from uveal melanoma. Investig Ophthalmol Vis Sci. 2007;48:4890–6.

    Article  Google Scholar 

  50. Dupuy F, Tabariès S, Andrzejewski S, Dong Z, Blagih J, Annis MG, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22:577–89.

    Article  CAS  PubMed  Google Scholar 

  51. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    Article  CAS  PubMed  Google Scholar 

  53. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA Pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16 e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Attrill H, Gaudet P, Huntley RP, Lovering RC, Engel SR, Poux S, et al. Annotation of gene product function from high-throughput studies using the Gene Ontology. Database. 2019;2019.

  56. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, et al. Comprehensive integration of single-cell data. Cell. 2019;177(7):1888–902. e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chua V, Orloff M, Teh JL, Sugase T, Liao C, Purwin TJ, et al. Stromal fibroblast growth factor 2 reduces the efficacy of bromodomain inhibitors in uveal melanoma. EMBO Mol Med. 2019;11:e9081.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lapadula D, Farias E, Randolph CE, Purwin TJ, McGrath D, Charpentier TH, et al. Effects of Oncogenic Galphaq and Galpha11 inhibition by FR900359 in uveal melanoma. Mol Cancer Res. 2019;17:963–73.

    Article  CAS  PubMed  Google Scholar 

  60. Amirouchene-Angelozzi N, Nemati F, Gentien D, Nicolas A, Dumont A, Carita G, et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol Oncol. 2014;8:1508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5:2512–21.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng H, Chua V, Liao C, Purwin TJ, Terai M, Kageyama K, et al. Co-targeting HGF/cMET signaling with MEK inhibitors in metastatic uveal melanoma. Mol Cancer Ther. 2017;16:516–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agarwal E, Altman BJ, Seo JH, Ghosh JC, Kossenkov AV, Tang H-Y, et al. Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. J Biol Chem. 2019;294:10407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li J, Agarwal E, Bertolini I, Seo JH, Caino MC, Ghosh JC, et al. The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells. Sci Signal. 2020;13:eaaz8240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Cancer Center Support Grant 5P30CA056036-17 to the SKCC supported the Microscopy Shared Resource facility. We thank Dr. Bruce Ksander (Schepens Eye Research Institute, Boston, MA), Dr. Martine Jager (Leiden University, Leiden, The Netherlands), and Dr. Sergio Roman-Roman (Institute Curie, Paris, France) for cell lines. We are grateful to Dr. Michael Durante (University of Miami Miller School of Medicine, Miami, FL) for his help with single-cell RNA-Seq data and Dr. Hsin-Yao Tang (The Wistar Institute, Philadelphia, PA) for metabolomic analyses. This work was supported by National Institutes of Health (NIH)/National Cancer Institute (NCI) grants R01 CA196278, R01 CA253977, and P01 CA114046 to AEA. This work also was supported by a Melanoma Research Alliance team science award (#559058) to AEA and JWH. The Wistar Proteomics and Metabolomics Facility was supported by P30CA010815, P01CA140043, and S10OD023586. Further support was from the American Association for Cancer Research (AACR)/Ocular Melanoma Foundation (OMF) awarded to AH.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AH; Formal analysis: AH, UB, and TJP; Investigations and interpretations: AH, TJP, UB, NB, VC, EH, MT, and ZTS; Resources: AH, ES, DWS, and JWH; Writing (original draft): AH; Writing (review and editing): AH, VC, UB, ES, ZTS, DWS JWH, and AEA; Funding acquisition: AH, DWS, JWH, and AEA; Supervision: AEA.

Corresponding author

Correspondence to Andrew E. Aplin.

Ethics declarations

Competing interests

AEA reports receiving a commercial research grant from Pfizer Inc. (2013–2017) and has ownership interest in patent number 9880150. JWH is the inventor of intellectual property related to prognostic testing for uveal melanoma. He is a paid consultant for Castle Biosciences, licensee of this intellectual property, and he receives royalties from its commercialization. The other authors disclose no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, A., Chua, V., Baqai, U. et al. Pyruvate dehydrogenase inactivation causes glycolytic phenotype in BAP1 mutant uveal melanoma. Oncogene 41, 1129–1139 (2022). https://doi.org/10.1038/s41388-021-02154-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02154-0

This article is cited by

Search

Quick links